
87 746 ERROR DETECTION AND RECOVERY FOR ROB0T NOTION PLANING 1'7*-ft ITH UNCERTAINTY(J) MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB 8 R DONALD

UNCLASSIFIED JUL 87 Al-TR-982 N$68i4-85-K-9124 F/G 12/9 UL

EE~mEEEElhlhIE
EEBmIIIEIIIIIE
E~llEllhlhllhE
EIEIIIIIEEIIIE
EllllEllllhlI

11111.25 1111_LI4 1111.6
111W lint- ,IIIfi

w C' Rf I(1Jr-N T~qT CHART

Tcchniczil Report 982

Error Detection
and Recovery for

Robot Motion
Planning with

Uncertainty

N *OV 1 8 1987

This dociment ha3 been 17
fox public xzlerse and jaie' its
di3tribution is ulimile&

Bruce R. Donald

MIT Artificial Intelligence Laboratory

UNC LASS I FIED
sr-j '- z- ssr' £.ON- or --. WAGE f*e. Dole Ente..E)

REPORT DOCUMENTATION PAGE BEFOR COMPLECTINORM
tEPO? 0ou"GER 1. GCvT ACCESSION 000 1. RECIPIENT'S CATALOG NDER

AI-TR-982ADA17

4' T
L E (an'd Switle l) S. TYPE OF REPORT 4 PEODO COvgACO

ERROR DETECTION AND RECOVERY FOR ROBOT Technical Report
MOTION PLANNING WITH UNCERTAINTY -6- ptrpa"I'la OR3. REPORT "UNDER

Bruce R. Donald N00014-81-K-0494
-85-K-0124
-82-KC-0134

9. PERFORMING ORGANIZATION m 4ME ANC ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Artificial Intelligence Laboratory AREA & WORK UNIT NUNGERS

545 Technology Square
Cambridge, MA 02139

11. COMTKOLLINO OPF Ic E NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projeczts Agency July-1987
1400 Wilson Blvd. 13. NUMBER OP PAGES

Arlington, VA 22209 310
IA MONITORING AGENCY NAME A ADDRESS(Of difeet Sin C6u0e081001u Otlee) IS. SECURITY CLASS. (of th. topeo)

Office of Naval Research UNCLASSIFIED
Information Systems_______________

Arlington, VA 22217 150. OCI SIFCTODOWNGRADING

16. DISTRISUTION STATEMENT (of this Aspen)

Distribution is unlimited.

17. DISTR19UTION STATEMENT (of t~e abaseet entered to Wjed& it. IIl~enm he RpeeS)

IS. SUPPLEMENTARY NOTESk

None

It. KEY WORDS (CoealW* O teenee ld .if aeeee.FY a" 111100010 &F IN& mAI)

Robotics, motion planning, uncertainty, Error Detection and Recovery, Error

Diagnosis, geometric uncertainty, computational geometry, geometric reasoning,
planning with uncertainty, model error, model uncertainty, EDR, failure mode
analysis

10 ASST RACT (t~lh.rwePoe. etdo It meeep and idevvIllp 07 10 bA0h be)

Robots must plan and execute tasks in the presence of uncertainty. Uncertaint y arises%
from sensing errors, control errors, and uncertainty in the geometry of the enviionment.

The last, which is called model error, has received little previous attention. We present a

framework for computing motion strategies that are guaranteed to succeed in the presence

of all three kittd, of uncertaintv. The motion strategies contpri~e sensor-based gross mtionI~s.

compliant inotiotixs. and simnple pushing motions.

It is not alwais possible in~ find plans that are guaranteed to succeed. For example. if

DD 1473 EDITION OF N OV 65 IS 08SOLETE UNCLASS IF IED
S/N 0*3-014*601SECURITY CLASSIFICATION OF T04IS PAGE (When Data ROWSPI

tolerancing errors render an assembly infeasible, the plan executor should stop and signal

failure. In such cases the insistence on guaranteed success is too restrictive. For this reason

we investigate Error Detection and Recovery (EDR) strategies. EDR plans will succeed or

fail recognizably: in these more general strategies, there is no possibility that the plan will

fail without the executor realizing it. The EDR framework fills a gap when guaranteed plans

cannot be found or do not exist: it provides a technology for constructing plans that might

work. but fail in a --reasonable" way when they cannot.

While EDR is largely motivated by the problems of uncertainty and model error. its

applicability may be quite broad. EDR has been a persistent but ill-defined theme in both

Al and robotics research. We give a constructive, geometric definition for EDR strategies and

show how they can be computed. This theory represents what is perhaps the first systematic

attack on the problem of error deteclion and recovery based on geometric and physical

reasoning. We also describe an implemented planner in a restricted domain, and discuss the

applicability of traditional computational geometry in algorithms for EDR planning.

44

I

A -

Error Detection and Recovery for
Robot Motion Planning with Uncertainty

Bruce Randall Donald

B.A., Yale Uniiversity

1980

S..Nl.. Electrical Einieerinig and~ Coiniput er Scienice. NIIT

1984

Submnitted to thie
Department of Electrical Engineering and Computer Science

ini partial fulfillmnent of the requiremients for the degree of
Doctor of Philosophy

at thie

Massachusetts Institute of Technology

July. 1987

c Mlassachiusetts Institute of Techniology. 1987

Signiature of Authior ... 1 1 [...

Departmient of Electrical Eniginieerinig anld Comnputer Scienice

July. 1987

Certified by ~
Toinis Lozanio- rez

TleiI Sup rv isor

Acce~ptedl bY ...
Artliur C. Sniitli

Chiairmnan. Departiental C'oiluiittee on Graduazte Studento

% .-*

Error Detection and Recovery
for Robot Motion Planning with Uncertainty

by
Bruce Randall Donald

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Robots must plan and execute tasks in the presence of uncertainty. Uncer-
tainty arises from sensing errors, control errors, and uncertainty in the geometry
of the environment. The last, which is called model error, has received little pre-
vious attention. We present;,a framework for computing motion strategies that are
guaranteed to succeed in the presence of all three kinds of uncertainty. The mo-

tion strategies comprise sensor-based gross motions, compliant motions, and simple
pushing motions.

It is not always possible to find plans that are guaranteed to succeed. For ex-
ample, if tolerancing errors render an assembly infeasible, the plan executor should
stop and signal failure. In such cases the insistence on guaranteed success is too
restrictive. For this reason-we investigate Error Detection and Recovery (EDR)
strategieso EDR plans will succeed or fail recognizably: in these more general
strategies, there is no possibility that the plan will fail without the executor realiz-
ing it. The EDR framework fills a gap when guaranteed plans cannot be found or
do not exist: it provides a technology for constructing plans that might work, but
fail in a "reasonable" way when they cannot. .,;

While EDR is largely motivated by the problerhs of uncertainty and model er-
ror, its applicability may be quite broad. EDR has been a persistent but ill-defined
theme in both Al and robotics research. We give a constructive, geometric definition
for EDR strategies and show how they can be computed. This theory represents
what is perhaps the first systematic attack on the problem of error detection and

recovery based on geometric and physical reasoning. We also describe an imple-
mented planner in a restricted domain, and discuss the applicability of traditional
computational geometry in algorithms for EDR planning.

Thesis Supervisor: Tomds Lozano-Prez

Title: Associate Professor of Computer Science

1|

0:,f

%

I'-

This report is a revised version of a thesis submitted on June 30, 1987 to the
Department of Electrical Engineering and Computer Science at the Massachusetts
Institute of Technology, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy.
This report describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the Laboratory's Artificial In-
telligence research is provided in part by the Office of Naval Research under Office of
Naval Research contract N00014-81-K-0494 and in part by the Advanced Research
Projects Agency under Office of Naval Research contracts N00014-85-K--0124 and
N00014-82-K-0334. The author is funded in part by a NASA fellowship adminis-

*tered by the Jet Propulsion Laboratory.

2k2

Acknowledgments

I suspect that paradise is very much like the MIT Al Lab. Thanks to all the friends and

scientists there who made this work possible. While tradition requires me to take responsibility
for any remaining flaws, honesty compels me to share credit with them for whatever insight and

clarity this thesis manifests.

I am deeply indebted to my supervisor, Tomas Lozano-Pkrez, for his guidance, support and
encouragement. Many of the key ideas in this thesis arose in conversations with Toms, and this
work would have been impossible without his help. Thanks for giving so much.

Rod Brooks and Eric Grimson were ideal thesis readers. Thanks for many useful comments
and suggestions, and for your help and taste over my years at MIT.

Thanks to Patrick Winston for providing generous support and the unique environment of

the AI Lab. Thanks for believing in me.

Mike Erdmann was always willing to talk about my work, and contributed many deep insights
to the theory. Mike introduced me to the field of ultra-low energy computational physics, and

provided valuable and insightful comments on a draft of this thesis. Thanks especially for your
friendship, and for always being there for me.

Thanks to John Canny for collaborating on the plane-sweep algorithm, for helping with the

complexity bounds, and for many discussions on robotics and computational geometry. John

was extremely generous with his time and ideas, and I count myself lucky to have such a stellar

mathematician as friend and collaborator.

Thanks to Steve Buckley for his friendship and for many discussions on robotics. Conver-

sations with Steve, Russ Taylor, and Matt Mason helped me to formulate the EDR problem and
focus my research. Steve, Randy Brost, and Margaret Fleck made many helpful suggestions on

early drafts of this thesis. Thanks to Randy who believed in the EDR theory from day one. Thanks
to John Reif, for his encouragement on this and stimulating collaboration on other work.

Many other scientists, machines, and friends have helped me over the last few years. Thanks

to Sundar Narasimhan, Mike Caine, and Steve Gordon for talking so much about robotics with
me. I am grateful to all the rest of the Girl Scouts for their friendship and uncritical support.

Thanks to Jimi Hendrix for months of faithful and devoted crunching. I am grateful to Ms. Laura

Nugent for pointing out the relevance of Tong's vector-bundle-valued cohomology [Gor] to this
research. Thanks to Laura Radin for her friendship, and for feeding Mike and me more than we

deserved.

* A generous fellowship from NASA's Jet Propulsion Laboratory facilitated my research.

Thanks to Carl Ruoff of JPL for his enthusiastic support of basic science, to Rich Mooney of
Caltech for his enthusiastic support of Bruce Donald, and to Claudia Smith of MIT for waging

many administrative battles on my behalf.

I thank the late Rick Jevon, my first scientist friend, for all he taught me about computers

and life.

Thanks to my parents, for incalculable help over many years, and for your unconditional
support.

Finally, thanks to Andrea, for so much more than words can tell.

3

* J .

Table of Contents

I. Introduction . 7
1. Description of Problem and the Planner 8

1.1 Application and Motivation 8
1.1.1 A Simple Example . 9
1.1.2 Application: Planning Gear Meshing 9
1.1.3 Experiment: Peg-in-Hole with Model Error13

1.2 Research Issues29
1.3 Review of Previous Work31
1.4 Map of Thesis 36

II. Basic Issues in Error Detection and Recovery38
2. Basic Issues 39

2.1 Simple Example of Model Error39
2.2 Representing Model Error40
2.3 Pushing Strategies in Generalized Configuration Space 44

2.3.1 Example: The Sticking Cone47
2.4 Guaranteed Plans in Generalized Configuration Space 49

3. Error Detection and Recovery 55
3.1 Generalizing the Construction 57

4. Generalization to n-Step Strategies 63
4.1 The "Twin Universe" Example63

5. What is "Recovery"?65
6. Implementation and Experiments: One-Step EDR Strategies68

6.1 Experiment: Computing EDR Regions68
6.2 Experiment: Planning One-Step EDR 70
6.3 Complexity Bounds 72
6.4 Critical Slices: An Introduction 73

6.4.1 Comparison with Lower Bounds77
6.4.2 Issues in the Critical Slice Method 78

7. Implementing One-Step EDR Planning in LIMITED 98
7.1 The Search for a Strategy98
7.2 Termination using Contact and the Role of Time 99
7.3 Employing History in EDR Planning 99

7.3.1 The Role of History in Constructing H8 100
7.3.2 The Role of History in Distinguishing H from G 101

7.4 A Priori Push-Forwards Based on Sticking 101
7.5 Sticking as a Robust Subtheory of EDR 101

7.5.1 Generalizations 103
7.5.2 Forward vs. Backward Chaining 104

O,

'pp

IFv

8. The Preirage Structure of EDR Regions 107
8.1 The Recognizability Requirements for EDR regions 107
8.2 The structure of phase space goals 108
8.3 The structure of the weak preimage 112

8.3.1 Summary 113

III. Multi-Step Strategies 114
9. Planning Using Preimages: A Detailed Example 116

9.1 Example: Planning Grasp-Centering Using Preimages 116

. 9.1.1 An EDR Strategy for Grasp-Centering 122
9.2 Solving the Preimage Equations is General but Not Computational 123

10. Push-Forwards: A Simple Generalization to n-Step Strategies 124

10.1 Generalization: Push-Forwards 125
10.2 More on the Push-Forward 126
10.3 An Approximation to the Push-Forward 127
10.4 Example: Multi-step EDR plan for Peg-in-Hole with Model Error . 128
10.5 The Loss of Power with Push-Forward Techniques 129

11. Failure Mode Analysis 194
.- 11.1 Example: Multi-Step Strategy for Gear Meshing 194

11.2 Introduction to Failure Mode Analysis 195
11.3 Specifying the Goal: Functional Descriptions 196

11.3.1 Specifying the Functional Aspects of the Goal 197
11.3.2 Computational Methods for Functional Goal Specification 198

11.4 Approximate Algorithms for Failure Mode Analysis 200
11.4.1 A General Algorithm 200
11.4.2 A Specialized Algorithm 201
11.4.3 On the Invariance Assumption 205
11.4.4 Quasi-Static Analysis 206
11.4.5 Stiction 207
11.4.6 Failures Outside the EDR Framework 207
11.4.7 Generalizations 207

* 11.4.8 Discussion: Generalized vs. Specialized Algorithm 208
. 12. Weak EDR Theory, Strategy Equivalence, and the Linking Condition . 211

12.1 Reachability and Recognizability Diagrams 211

12.2 More General Push-Forwards 212
12.3 Weak EDR Theory 213
12.4 Strategy Equivalence 214

12.5 The Linking Conditions 217
12.6 Beyond the Fixed-Point Restriction 220

12.7 What Good is Weak Equivalence? 222
12.8 Application: Failure Mode Analysis in the Gear Experiment . . . 223

5

.14 ,

[0_4 ~,

12.9 Review 224

IV. Planning Sensing and Motion for a Mobile Robot. 227
13. Sensing and Motion EDR for a Mobile Robot 227

13.1 Using Information Provided by Active Sensing. 235
13.2 Generalizations 237

13.2.1 Pushing 238
13.2.2 Non-Point Robots 238
13.2.3 Rotations. 238

V. Implementation, Computational Issues. 241
14.1 Commnents on the Plane Sweep Algorithm 242

14.1.1 The Basic Idea. 242
14.1.2 Contrast with Previous Algorithms 244

14.2 Non-Directional Backprojections. 244
14.2.1 Intuition. 244

*14.2.2 Computing Non-Directional Backprojections 246
14.3 Multi-Step Strategies using Non-Directional Backprojections . .. 251
14.4 Comments and Issues. 252
14.5 Complexity and Theoretical Results 254

VI. Conclusions 258
15.1 Summnary 259
15.2 Future Work 260

Appendices 264
§A.1. A Note on Geometry. 264
§A.2. A Formal Review of Preimages. 264
§A.3. On the Geometry and Physics of Generalized Configuration Space 266
§A.4. Derivation of'the Non-Holonomic Constraints for Pushing 267
§A.5. A More Formal Summary of the Construction of fl.. 279

6§A.6. Definition of an Approximate Push-Forward. 280
§A.7. The Formal Requirements for Push-Forwards. 281

References 284

Code for the Plane Sweep Algorithm 291

N % 1W ".

~I. Introduction

J

,.

9'

9'

4'

.4 ' . " o ° . * ° ° . . % % - ", - , . " - ' -

1 Description of Probhlemi and the Planner

v~rl ,, fri()il i-Lillliz i-rrur , i ,' ., nr i, ii , r1 aii,t' :. the gletrI'Tri 'i l
" 4 .,f r ~ t, , rii dii t it dll . I ! r ,, I, Ai,, -I .E, .L-t Avii : l: ,;i.1ffi fti,drs , ', :,..-

t-1 eI - t Tit - , -: e ' ,-- 1 , .Pse 1 a f, r-aa, frami w,)r K f, t

CotIlIpUtilg jlIj)tuljI ',trateie , w'A' i j I I CIar-It -I t I Itreedf - i. II cee f 1-t- I-e prse 1 -C ,

id' three kiii., ,f itwcertaiiity ' %Vt W hw tiat t i effect ively ,ornputabie f4,r .or,-

,,npe .ses The IfiotloIin trategif- we coni.Ier, :rid- Sde rg'Lor b)A-.,ed gos Oi' 'I Jo!-

',I ~ I nant l t i e , , and 11ItIH)le p)Il111Lm1g 11t t H ILS

%Ve show that model error can be represented by position uncertaintV III a

generalized configuration space. Ve dt-scribe the tructure of this S"'ace. and how

motion strateges may be planned in it

It is not always possible to find pla:s that are guaranteed to succeed. III
the presence of model error, such plans may not even exist For this reason we
investigate Error Detection and Recovery (EDR) itrategies. \Ve characterize such

* -trategies geometrically, and propose a formal framework for constructing them.
This thesis offers two contributions to the theory of manipulation. The first

is a framework for planning motion strategies with model error. Model error is
a fundamental problem in robotics, and we have tried to provide a principled.
;,:-cise approach. The framework can be described very compactly, although many
algorithmic and implementational questions remain.

The second contribution is a formal, geometric approach to EDR. While EDR is
largely motivated by the problems of uncertainty and model error, its applicability
may be quite broad. EDR has been a persistent but ill-defined theme in both
Al and robotics research. Typically, it is viewed as a kind of source-to-source
transformation on robot programs: for example, as a method for robustifying them
by introducing sensing steps and conditionals. We take the view that if one can
actually plan to sense an anomalous event, and to recover from it, then it is not
an error at all. When such plans can be guaranteed, they can be generated by the

* [LMT] method. In our view of EDR, an "error" occurs when the goal cannot be
recognizably achieved given the resources of the executive and the state of the world.
The EDR framework fills a gap when guaranteed plans cannot be found or do not
exist: it provides a technology for constructing plans that might work, but fail in
a "reasonable" way when they cannot. This theory attempts a systematic attack

0,, on the problem of error detection and recovery based on geometric and physical

%- reasoning.

1.1. Application and Motivation

e-0
04".

".-.

1.1.1 A Simple Example

Consider fig. 1, which depicts a peg in hole insertion task. One could imagine
a manipulation strategy derived as follows: The initial plan is to move the peg
straight down towards the bottom of the hole. However, due to uncertainty in the
initial position of the peg, the insertion may fail because the peg contacts to the left
or right of the hole. Either event might be regarded as an "error." The "recovery"
action is to move to the right (if the peg contacted to the left) and to move to the
left (if the peg contacted to the right). Thus a plan can be obtained by introducing
sensing steps and conditional branches.

Suppose that this conditional plan can be guaranteed-that is, it is a complete
manipulation strategy for this simple task. In this case, it seems strange to view
the contact conditions as "errors." We do not regard these events as "errors." Our
reasoning is that if they can be detected and planned for, then they are simply
events in a guaranteed plan.

We are interested in a different class of "errors." Now suppose that there is
4uncertainty in the width of the hole. If the hole is too small, we will consider this an

error, since it causes all plans to fail. Similarly, if some object blocks the hole, and
cannot be pushed aside, this is also an error, since it makes the goal unreachable.
If either error is possible, there exists no guaranteed plan, for there is no assurance
that the task can be accomplished. Since no guaranteed plan can be found, we are
left with the choice of giving up, or of considering a broader class of manipulation
strategies: plans that might work, but fail in an "reasonable" way when they cannot.
Specifically, we propose that EDR strategies should achieve the goal when it exists
and is recognizably reachable, and should signal failure when it is not. For example,
an EDR strategy for the peg-in-hole problem with model error might attempt to
achieve the insertion using compliant motion, but be prepared to recognize failure
in case the hole is too small. Below, we describe how an implemented planner,
called LIMITED, synthesizes such strategies. LIMITED is an implementation of the
EDR theory in a restricted domain.

1.1.2 Application: Planning Gear Meshing

We must stress that EDR is not limited to problems with model error. There
are many applications in which the geometry of the environment is precisely known,
but in which guaranteed plans cannot be found, or are very difficult to generate.
We now describe such a situation.

An interesting application domain for EDR is gear meshing. It is an example
where EDR is applicable even though the shape of the manipulated parts is precisely
known. Let us consider a simplified instance of this problem. In fig. 2 there are

.- Z.Q9

.

Fig. 1. The goal is to insert the peg in the hole. No rotation of the peg is
allowed. One can imagine a strategy which attempts to move straight down, but
detects contact on the top surfaces of the hole if they occur. If the peg sticks
on the top surfaces, the manipulator tries to move to the left or right to achieve
the hole. Are these contact conditions "errors"? We maintain that they are not,
since they can be planned for and verified.

% two planar gear-like objects, A and B. The task is to plan a manipulation strategy

which will mesh the gears. The state in which the gears are meshed is called the
goal.

We will consider two variants of this problem. In the first, we assume that the
manipulator has grasped A, and that neither A nor B can rotate. However, A can
slide along the surfaces of B. In the second, B is free to rotate about its center,

. but this rotation can only be effected by pushing it with A. In both cases, the

initial orientation of B is unknown. We regard A as the moving object and B as

the environment; hence even though the shape of B is precisely known, we choose
to view the uncertaintp in B 's orientation as a form of model error. In the first

case, the system has only two degrees of motion freedom. In the second, there are

10

,

0

%--.
" " . ." . ." " " . "

Fig. 2. Geometric models of two gear-like planar objects A and B. A is grasped
and can translate but not rotate. B can rotate about its center if pushed. The
orientation of B is unknown. The task is to generate a motion strategy to mesh
the gears.

three degrees of motion freedom, one of which is rotational, since B can be pushed.
VWe distinguish between the rotation and non-rotation variants of the problem in

order to highlight the additional techniques our planner employs when rotations are

introduced.
In both variations, there is uncertainty in control, so when a motion direction is

commanded, the actual trajectory followed is only approximately in that direction.

There is also uncertainty in position sensing and force sensing, so that the true
• 4t position and reaction forces are only known approximately. The magnitude of these

uncertainties are represented by error balls.
In general, a commanded motion of A may cause A to move through free space,

and contact B, possibly causing B to rotate. Our EDR theory is a technique for

.analyzing these outcomes geometrically to generate strategies that achieve the goal
when it is recognizably reachable, and signal failure when it is not.

.5% 11

04
.. ' '~- .p5 p(-W ., '/. .- ", ,.?,:,.".' .ee , ;,Y 2eg; " ., .' ,,, , .,/..' .J : '

In an experiment, the EDR theory in the gear domain was applied using the
planner, LIMITED, as follows. Consider the problem of meshing two planar gears,
under uncertainty as above. Suppose that gear B can rotate passively but has
unknown initial orientation, as above. Suppose that A has been gripped by a
robot. The initial position of A is uncertain. The robot can impart either pure
forces (translations), or pure torques (rotations) to A. The planner can choose
the direction of translation or rotation. Can a multi-step strategy of commanded
translations and rotations be found to mesh the gears?

LIMITED was able to generate an EDR strategy for this problem. The charac-
teristics of the experiment are:

0 There are three degrees of motion freedom (two translational and one rota-
tional) for A.

* There is one degree of rotational model error freedom (the orientation of B).
* It is possible to push B to change its orientation.

* There is sensing and control uncertainty.

* The geometry of the gears is complicated-they have many edges.
* Quasi-static analysis [Mason] is used to model the physics of interaction be-

tween the gears.
Thus we have a kind of four-degree of freedom planning problem with uncer-

tainty and pushing. To generate multi-step EDR strategies under pushing, LIMITED

employed the EDR theory together with a technique called failure mode analysis.

Now, there may exist a guaranteed strategy to mesh the gears. For example,
experimental evidence suggests that for involute teeth gears, almost any meshing
strategy will succeed. For other gear shapes perhaps some complicated translation
while spinning A will always succeed. I don't know if there is such a guaranteed
strategy for this case. It seems difficult for a planner to synthesize such guaranteed
strategies, or even to verify them, if they exist at all.

A person might try to solve this problem with the following motion strategy:

0 Ram the gears together. See if they mesh.

Or, somewhat more precisely,
0 Ram A into B. If they mesh, stop. If they jam, signal failure and try again.

Probabilistically, this is a rather good strategy. It is certainly very simple, and
probably easier to generate than a guaranteed strategy. If vision can be used to
sense whether A and B are meshed, then it is an EDR strategy with just one step.

*@ Suppose, however, that vision is poor, or that the gears are accessible to the
robot gripper, but not to the camera. This means that position sensing will be
very inaccurate, and hence may be of no use in determining whether thc gears are
successfully meshed. This will often be the case in practice. In this case, force

U' sensing must be used to disambiguate the success of the motion (meshing) from

12

p.J

1P o

failure (jamming in an unmeshed state). If the robot has force sensing, then it
might use the following two-step EDR strategy:

" Ram the gears together. Spin them to see whether they meshed.

Or, again more precisely,
" Ram A into B. Next, spin A. If A and B break contact, or if the gears stick

(don't rotate), then signal failure. Otherwise, signal success.

This strategy is essentially the one that LIMITED generates. The plan is

Motion 1: Command a pure translation of A into B.'

Terminate the motion based on force-sensing when sticking occurs (when there
is no motion).

Motion 2: Command a pure rotation of A.
If breaking contact or sticking occurs, signal failure. Otherwise, signal success.

In this plan, motion (1) does not terminate distinguishably in success (meshed)
or failure (jammed). That is, after motion (1) terminates, the plan executive can-
not necessarily recognize whether or not the gears are meshed. LIMITED predicts
this, and generates motion (2), which disambiguates the result of motion (1). The
generation of the second, disambiguating motion involves the use of failure mode
analysis. Breaking contact and sticking are examples of failure modes. The second
motion is generated so that from any unmeshed state resulting from motion (1), all
possible paths will terminate distinguishably in a failure mode. Failure mode analy-
sis is a robust subtheory of EDR by which LIMITED generates multi-step strategies
under pushing.

1.1.3 Experiment: Peg-in-Hole with Model Error

This section describes a plan that was generated by LIMITED for a peg-in-hole
* problem with model error. It gives the flavor of how EDR strategies work. Since

pushing motions are not involved here, LIMITED does not use failure mode analysis
to solve this problem.

Another peg-in-hole problem is depicted in fig. 3. Again, as in fig. 1, there is
uncertainty in the width of the hole; that is, the width is known to lie within some
given interval. In addition, there are chamfers on the sides of the hole. The depth
of the chamfers is also unknown, but we are given bounds on the depth. Finally,
the exact orientation of the hole is uncertain. The geometry of the hok, is input
to the planner as a set of parametrically defined polygons. They are dcliiied by a

'LIMITED generates the actual force vector.

13

7, -- N

three parameter family, for width of the hole, depth of the chamfers, and orientation
of the hole. An associated bounding interval is also input for each parameter. The
geometry of the peg is input as a polygon.

In this problem, the width of the hole may be smaller than the width of the
peg. Thus there can exist no strategy that is guaranteed to succeed for all geomet-
ric uncertainty values. However, assume that the assembly-the hole geometry-
is inaccessible to robust vision or position-measuring devices. In particular, the
measurement error will typically determine the model error bounds, which in this
example are large for the purpose of illustration. Thu.s it is not a priori possible
to measure the dimension, ahead of time to determine whether or not the assembly
is feasible. Instead, the best we can hope for is an EDR strategy: a strategy that
takes some action in the world to attempt the assembly, but whose outcome can be
recognizably diagnosed as success or failure by the run-time robot executor.

The peg is allowed to translate in the plane. Its motion is modeled using
generalized damper dynamics. This permits sliding on surfaces about the hole.
Friction is modeled using Coulomb's law. With these dynamics and perfect control,
the peg would exhibit straight-line motions in free space, followed by sliding motions
in contact, where friction permits. Here, however, there is control uncertainty, which
is represented by a cone of velocities. Motions in free space fan out in a kind of
"spray." Again, sliding is possible on surfaces, but so is sticking, depending on
the effective commanded velocity at a given instant. (In this case, we say sliding
is non-deterministic). The size of the control uncertainty cone of velocities is an
input to the planner. Whether sticking may occur on an edge may be computed by

"c intersecting the friction cone with the negative control uncertainty cone.

It is possible to sense the position of the peg and the forces acting on it. This
information is only approximate. The error bound on the position sensor readings
is input to the planner as the radius of a disc.

LIMITED generates plans using a configuration space representation of the con-
straints [Lozano-Pdrez]. In the plane, one imagines shrinking the moving object to
a point, and correspondingly "growing" the obstacles. The point must be navigated
through free-space, sliding on surfaces, and so forth, into the hole. Fig. 4 shows
configuration spaces for different parametric variations of model error. Notice that
when the "real" hole is too small for the peg to fit, then there is simply no hole at
all in the corresponding configuration space. Each frame in fig. 4 is called a "slice;"
a slice represents a cross-section where the model error parameters are constant. To
synthesize an EDR strategy, LIMITED must in some sense consider all such slices.
In practice LIMITED works by constructing a finite, although typically large number
of slices. We will show how in many cases, only a low polynomial number need be
considered. LIMITED begins by considering a small number of slices, and generates
a tentative motion strategy. This strategy must pass a test-which we call the EDR

*14

04

test-to be recognized as an EDR strategy. One of the chief goals of this thesis is
to derive this test, and to make it formal and algorithmic. Next, LIMITED attempts
to "generalize" the strategy by considering successively more slices. The strategy is
modified so that it passes the EDR test in all slices. The number of slices considered

,V. is the resolution of the planning. This approach is called multi-resolution planning.

Let's consider an EDR plan that LIMITED computed for this problem. Figs.
N5-13 show the plan graphically. Qualitatively, the plan may be described as follows:

0 (1) First, move left and slightly down. The motion will terminate on the left
side of the hole, on the left chamfers, or overshoot the hole entirely. Where the
motion terminates depends both on the trajectory evolution within the control
uncertainty, and on the actual geometry of the hole. The motion may, how-
ever, slide down the left edge of the hole all the way into the goal. However,
this sliding is non-deterministic, and the motion may stick anywhere along that
edge. Since the first motion may terminate arbitrarily close to the goal region,
LIMITED predicts that the run-time executive system cannot necessarily distin-

mgush whether or not the first motion failed to achieve the goal.

0 (2) The termination regions from motion (1) are taken as the start regions for
a new motion. Next, try to recover by commanding a motion straight down and
slightly to the right. This motion may achieve the goal, or may undershoot it,
or may overshoot it. The second motion terminates when the peg sticks on a
surface. If such a termination surface is outside the goal, it is called a failure
region. LIMITED calculates that after the second motion, the failure regions
are distinguishable from the goal regions. Hence after the second motion, the

t. run-time executive can recognize whether or not the plan has failed.
Finally, since LIMITED is a forward-chaining planner, it is possible to take the

failure regions from motion (2) and plan a third recovery motion. Thus, roughly
speaking, in the EDR framework, recovery actions are planned by forward-chaining
from the failure regions of the previous motion. When the failure regions are poten-
tially indistinguishable from the goal (using sensors), then the recovery action must
satisfy the formal EDR test when executed from the union of the goal and the pre-

vious failure regions. For example, when we view motion strategies as "mappings"
between subsets of configuration space, then typical "robust" recovery actions are
EDR plans in which the goal is a "fixed point."'2 Motion (2) is an example of such
a one-step EDR plan.

Figs. 5-13 show the plan in just four different slices, to give a flavor for the
plan. The rest of the slices may be found later in the thesis. Fig. 5 shows the

vconfiguration spaces of the four slices. The goal region here is shaded black. Note
d.. that in one slice, the goal disappears. The initial uncertainty in the position of the

2That is, when motion (2) originates in the goal, it also terminates recognizably il the
goal.

15

-i -

-9._r I .

peg is represented by constraining the reference point (the point to which the peg
has been shrunk) to lie in one of the start regions in fig. 6.

Figs. 7-8 represents the forward projection of the first motion. This region is
the outer envelope of all possible trajectories evolving from the start regions. It
is the set of all configurations that are reachable from the start regions, given the
commanded velocity and control uncertainty cone.

Fig. 9 shows the termination regions for motion (1). The termination regions

outside the goal are not necessarily distinguishable from the goal.

Figs. 10-11 show the forward projection of the second motion.

Fig. 12 shows the termination regions for the second motion.

Fig. 13 shows the size of the position sensing uncertainty ball. The goal and
the failure regions in fig. 12 are distinguishable using sensors.

-41

.

.-

• % .

a-. 16

.4-. ' " - ' , - " . " - ' ""' , '' , " "" '""""""""" " '' r """ "" •" , .•, ,. ,, ' '., ° . ,l . '-"'-'°'- %

'S q i " a m - ' p , - ' . ° " " - " , . - % . % % ! % ' - . . 4° ° .° ,.

N I I //

N 1/

Fig. 3. A peg-in-hole environment with model error. The width of the hole
4 (a1), depth of chamnfer (02), and orientation of the hole (03) are the model

parameters. The hole is allowed to close up.

17

< ;%

C :

7 L L
-!__ _r, __ __

C C1
L~ !I

I..5..I

0 C 0 C

wita moe ro eitdi. a . Fi.4 h a fe- lcee a t costn

°%%

o .,

I fl [
II

L _______ a - C a gn i

"4 ' Fig. 4a. The configuration space slices for many different parametric model error
• C" values. These configuration spaces were generate for the peg-in-hole problem

[,-0 with model error depicted in fig. 3. Fig. 4a shows a few slices taken at constant
- orientation, whereas in fig. 4b, more slices are shown at various orientations.

18

S'S

% "° ~-
I I I _JJ-

.'...j"

I l l j ' "0 j-a;= l

: - . - - -

0;,7

-- j . -

--.. :
--

*-
" 7 7 ,

.

,:,..,
-- , I- _- .-. , -- !

__' a -. , ,- •h,-., - - : ,* b ,_ . - I

L, ~ T : , ,

- " F i g . 4 5

0t,,:.'1

E':./'

-, I

Cc .

a ,
'N-

A

Fig. 5. 4 configuration space slices for the peg-in-hole with model error problem.
The goal region is shaded black. In one slice, the goal vanishes.

v

V.

"* 20

%00

V.

NW- % -' . . . *.." " .t" ". . '. .% '"""="% '"". . ,% % ', '','', '' ', % ' JN'. -% % -, % %"

rn:LJ

'

C

i~S.

hk

-' -

.' Fig. 6. The start region in the four slices. The reference point of the peg is
known to start within this region.

21

I
,.*..... * --- A.-,- V -. '% ,. **

din i

N

ep.i o

comne veoiyadcnrl unetit oe

P22

..

UAU AI

IJ.*

- ... 2I

Fi.7 hefrad rjcio ftefis oio.Ti" rgo s h ue

J. 1
N, °.". ". ,'" . , ,.. . - . . "°"". , ; . ."""•" -" .. , " - " ._" . .2 ' . , ¢ . 0 """""'l

%,".

dd

p

S

SOq

Fig. 8. The forward projection of the first motion, shown without the obstacles.

'O,

€'23

i t

4 2

JS.

II.

~1

., .5

3%,.~

5~*~

.1~* .~

A

".9

.~' ,~'

5'. :~
*5~

'PS _________________

0
5'

% .5,

.5', 5,

* 5,-

"5'.

5%
.5'.

a
a* 5.3

din5 C-.~Jh *32

at-

S ____ ~
in SE

'P
'P

Fig. 10. The forward projection of the second motion.
S.

a

*1
-5'

'P5'.

'P
'P

pp.'

p
25

'P.;.
5,,

.5

'3%

Fi.1.Tefradpoeto fteseodmtosonwtotteosa

cles

26S

idS

Se , xW

()

S fi.
S *II

U

6

U
U

U

()

U
A

U

a

5'.

U
- U

*

Fig. 12. The termination regions for the second motion. These are edges in
configuration space where sticking can occur.

4.

27

- ~. ~

C CC
C -

U 41 0

0

U -6

Fig. ~ ~ (3ph alr ein n h ol r itnusalee ie h

sensing~~~~~~~~~~~~~ unetit.Tedsaniae h antd ftepsto esn
uncertainty

28A

* £ -

1.2. Research Issues

The gross motion planning problem with no uncertainty has received a great
deal of attention recently. In this problem, the state of the robot may be represented
as a point in a configuration space. Thus moving from a start to a goal point may be
viewed as finding an arc in free space connecting the two points. Since the robot is
assumed to have perfect control and sensing, any such arc may be reliably executed
once it is found. In particular, given a candidate arc, it may be tested. That
is, motion along the arc may be simulated to see whether it is collision free. For
example, an algebraic curve may be intersected with semi-algebraic sets defining the
configuration space obstacles. In the presence of uncertainty, however, we cannot
simply simulate a motion strategy to verify it. Instead, we need some technique for
simulating all possible orbits, or evolutions of the robot system, under any possible
choice of the uncertain parameters. With sensing and control uncertainty, the state
of the robot must be viewed as a subset of the configuration space. Motions, then,
can be viewed as mappings between these subsets. Of course there are many such
subsets! From this perspective, it is clear that a chief contribution of [LMT] has been
to identify and give a constructive definition for a privileged class of subsets, called
preimages, and show that it is necessary and sufficient to search among this class.
This framework appears very promising for planning guaranteed motion strategies
under sensing and control uncertainty. The [LMT] framework assumes no model
error. In this thesis, we reduce the problem of planning guaranteed strategies with
sensing, control, and geometric model uncertainty to the problem of computing
preimages in a (higher dimensional) generalized configuration space. '

This is an interesting and useful result; previously, there was really no system-
atic theory of planning in an environment whose geometry is not precisely known.
However, I do not think that it is the main point of this thesis. This is because there
are certain inadequacies with the planning model. The insistence that strategies
be guaranteed to succeed is too restrictive in practice. To see this, observe that
guaranteed strategies do not always exist. In the peg-in-hole problem with model

*, error (figs. 3-13) there is no guaranteed strategy for achieving the goal, since the
4 hole may be too small for some model error values. For these values the goal in

configuration space does not exist. Because tolerances may cause gross topological
changes in configuration space, this problem is particularly prevalent in the pres-
ence of model error. More generally, there may be model error values for which the
goal may still exist, but it may not be reachable. For example, in a variant of the
problem in fig. 3, an obstacle could block the channel to the goal. Then the goal is
non-empty, but also not reachable. Finally, and most generally, there may be model
error values for which the goal is reachable but not recognizably reachable. In this
case we still cannot guarantee plans, since a planner cannot know when they have

3 We use the terms model error and model uncertainty interchangeably.

29

I
. ..

succeeded.

These problems may occur even in the absence of model error. However, with-
out model error a guaranteed plan is often obtainable by back-chaining and adding
more steps to the plan. In the presence of model error this technique frequently
fails: in the peg-in-hole problem wit&, . -del error, this technique will not work since
no plan of any length can succeed when the hole closes up.

This is why we investigate EDR strategies, and, in particular, attempt to for-
malize EDR planning. The key theoretical issue is: How can we relax the restriction
that plans must be guaranteed to succeed, and still retain a theory of planning that
is not completely ad hoc? We attempt to answer this by giving a constructive def-
inition of EDR strategies. In particular, this approach provides a formal test for
verifying whether a given strategy is an EDR strategy. The test is formulated as a
decision problem about projection sets in a generalized configuration space which
also encodes model error. Roughly speaking, the projection sets represent all pos-

"PV sible outcomes of a motion (the forward projection), and weakest preconditions for

attaining a subgoal (the preimage).

Given the formal test for "recognizing" an EDR strategy, I then tested the
definition by building a generate-and-test planner. The generator is trivial; the

"- recognizer is an algorithmic embodiment of the formal test. It lies at the heart
of this research. A second key component of the planner is a set of techniques
for chaining together motions to synthesize multi-step strategies. The planner is a
forward-chaining, multi-resolution planner, called LIMITED. LIMITED operates in a
restricted domain. Plans found by LIMITED in experiments are described above,
and in chapters II and III.

Finally, let me suggest that a new framework-the EDR framework- for
planning with uncertainty may be justified not only by the restrictiveness of the
guaranteed-success model, but also by the hardness of the problem. The gross mo-
tion planning problem without uncertainty may be viewed, under some very general
assumptions, as a decision problem within the theory of real closed fields. This gives
a theoretical decision procedure with polynomial running time once the degrees of

* freedom of the robot system are fixed [SS]. However, no such theoretical algorithm
is known for the general compliant motion planning problem with uncertainty. Fur-
thermore, the lower bounds for computing guaranteed strategies even in 3D are
dismal: the problem is known to be hard for exponential time [CR]. At this point
it is unknown whether EDR planning is more efficient than guaranteed planning.
However, there is some experimental evidence leading one to conjecture that cer-

'f*- tan problems requiring very complicated, exponential-sized guaranteed plans may

. - admit very short EDR plans.

However, the motivation for this thesis is not complexity-theoretic. Instead,
the chief thrust is to show how to compute motion strategies under model error

30

dQ

I' - - . ,. , % % % ,- - - . - ' - ' . ' -% % % % - ,o - - . - . o . . % = .- ' " .* - . .' . . % , ... " - ' - ." . " , " . r . , , " . . . - . - . " ,. . - " . . - . - . . - . - ¢ '

-0 . . - . % % , ,,, . . - . % - . ° . -. - % - . - . % % -

(and sensing and control uncertainty), using a formal and constructive definition
of EDR strategies. The first goal was a precise geometric characterization of EDR

planning-when one thinks about it, it is in fact somewhat surprising that such
a thing should exist at all! But in fact it does, as we shall see. The second goal
was to test this characterization by building a planner. Thus it was necessary to
devise implementable algorithms to construct the geometric projection sets and
decide questions about them. Therefore, this thesis and LIMITED contain a mixture
of precise combinatorial algorithms and of approximation algorithms. We indicate
which algorithms are exact and give combinatorial bounds. We also identify the
approximation algorithms, and indicate the goodness of the approximation and
whether it is conservative. Much work, or course, remains in developing better
algorithms for EDR planning, and in testing out the plans using real robots.

1.3. Review of Previous Work

1Broadly speaking, previous work falls the following categories: Algorithmic
* motion planning, Compliant motion planning with uncertainty, Model Error, and

Error detection and recovery.

1.3.1 Algorithmic Motion Planning

In algorithmic motion planning, (also called the piano movers' problem, or the
find-path problem) the problem is to find a continuous, collision-free path for a
moving object (the robot) amidst completely known polyhedral or semi-algebraic
obstacles. It is assumed than once such a path is found, it can be reliably executed
by a robot with perfect control and sensing. Many algorithms employ configuration

space, [Lozano-Prez, Arnold, Abraham and Marsden, Udupa]. [Lozano-Prez and
Wesley] proposed the first algorithms for polygonal and polyhedral robots and ob-
stacles without rotations. These results were later extended by [Lozano-P6rez 81,

A' 831 to polyhedral robots which could translate and rotate. [Brooks 83] designed a
• find-path algorithm based on a generalized-cone representation of free-space. Brooks

v: later extended this method for a revolute-joint robot. [Donald 84,85,87] developed
a motion-planning algorithm for a rigid body that could translate and rotate with
six degrees of freedom amidst polyhedral obstacles (the so-called "classical" movers'

V problem). [Lozano-Prez 85] reported another 6DOF algorithm for 6-link revolute
manipulators. [Canny 85] developed an algebraic formulation of the configuration-
space constraints, which led to a very clean collision-detection algorithm. All of
these algorithms have been implemented.

There are many theoretical results on upper and lower bounds for the find-path
problem, see [Yap] for a good survey article. These results begin with [Lozano-Prez

• 4 .'S f .31

.r.. 4.

and Wesley], who give the first upper bounds: they give efficient algorithms for plan-
ning in 2D and 3D in the absence of rotations. [Reif 79] obtained the first lower
bounds, demonstrating the problem to be PSPACE-hard when the number of de-
grees of freedom are encoded in the input specification of the problem. [Hopcroft,
Joseph, and Whitesides] and [Hopcroft, Schwartz, and Sharir] have also given in-
tersesting lower bounds for motion planning. [Schwartz and Sharir] gave a very
general theoretical algorithm for motion planning via a reduction to the theory of
real closed fields. The algorithm is doubly-exponential in the degrees of freedom,
but polynomial in the algebraic and geometric complexity of the input. Over the

next five years, there were many papers reporting more efficient special-purpose
motion planning algorithms for certain specific cases; see [Yap] for a survey. To
date the fastest general algorithm is due to [Canny, 87], who gives a generic motion
planning algorithm which is merely singly-exponential in the degrees of freedom.
For a motion planning problem of algebraic complexity d, geometric complexity
n, and with r degrees of freedom, Canny's algorithm runs in time (do(r 2) nr logn)
which is within a log factor of optimal. While none of these theoretical algorithms
have been implemented, Canny's is conjectured to be efficient in practice as well.

One might ask whether exact algorithms for motion plannning can ever be
utilized after uncertainty in sensing and control are introduced. The answer is a
qualified "yes." In particular, the Voronoi diagram has proved to be useful for mo-
tion planning among a set of obstacles in configuration space (see Jj6 'Dinlaing and
Yap 82; O'Dinlaing, Sharir, and Yap 84; Yap 84], and the textbook of [Schwartz
and Yap 86] for an introduction and review of the use of Voronoi diagrams in mo-
tion planning). The Voronoi diagram, as usually defined, is a strong deformation
retract of free space so that free space can be continuously deformed onto the dia-

gram. This means that the diagram is complete for path planning, i.e. Searching
the original space for paths can be reduced to a search on the diagram. Reducing
the dimension of the set to be searched usually reduces the time complexity of the

* search. Secondly, the diagram leads to robust paths, i.e. paths that are maximally
* clear of obstacles. Hence Voronoi-based motion planning algorithms are relevant to

motion planning with uncertainty. [Canny and Donald] define a "Simplified Voronoi

Diagram" which is still complete for motion planning, yet has lower algebraic com-
plexity than the usual Voronoi diagram, which is a considerable advantage in motion

planning problems with many degrees of freedom. Furthermore, the Simplified di-
agram is defined for the 6D configuration space of the "classical" movers' problem.
For the 6DOF "classical" polyhedral case, [Canny and Donald] show that motion
planning using the Simplified diagram can be done it time O(n7 log n).

Many additional robotics issues are discussed in [Paul; Brady et al.].

32

X W. .

% L ",

1.3.2 Compliant Motion Planning with Uncertainty

This section reviews previous work on planning compliant motions which are
guaranteed to succeed even when the robot system is subject to sensing and control
uncertainty. All of this work assumes perfect geometric models of the robot and
obstacles.

Work on compliant motion can be traced to [Inoue, Whitney, Raibert and
Craig, Salisbury]. This work in force control attempted to use the geometric con-
straints to guide the motion. By cleverly exploiting the task geometry, placements
far exceeding the accuracy of pure position control can be achieved. [Mason 83]
develops spring and damper compliance models, and gives an extensive review of re-
search in compliant motion. [Simunovic, Whitney, Ohwovoriole and Roth, Ohwovo-
riole, Hill and Roth] have all considered frictional constraints, as well as jamming
and wedging conditions. [Erdmann], [Burridge, Rajan and Schwartz] have consid-
ered algorithmic techniques for predicting reaction forces in the presence of friction.
[Caine] has considered manual techniques for synthesizing compliant motion strate-
gies, generalizing the methods of [Simunovic, Whitney]. [Mason, 82] has developed
a way to model pushing and grasping operations in the presence of frictional con-
tact. [Peshkin] has extended this work. [Brost] has further developed techniques
for predicting pushing and sliding of manipulated objects to plan squeeze-grasp

*... operations. In addition, Brost is currently investigating the application of EDR

techniques to the squeeze-grasp domain.
Early work on planning in the presence of uncertainty investigated using skele-

* ton strategies. [Lozano-Prez 761 proposed a task-level planner called LAMA which
used geometric simulation to predict the outcomes of plans, and is one of the earliest
systems to address EDR planning. [Taylor] used symbolic reasoning to restrict the
values of variables in skeleton plans to guarantee success. [Brooks 82] later extended
this technique using a symbolic algebra system. [Dufay and Latombe] implemented
a system which addresses learning in the domain of robot motion planning with

uncertainty.
e [LMT] proposed a formal framework for automatically synthesizing fine-motion

0strategies in the presence of sensing and control uncertainty. Their method is called
the preimage framework. [Mason, 83] further developed the preimage termination
predicates, addressing completeness and correctness of the resulting plans. [Erd-
mann] continued work on the preimage framework, and demonstrated how to sep-
arate the problem into questions of reachability and recognizability. He also showed
how to compute preimages using backprojections, which address reachability alone,
and designed and implemented the first algorithms for computing backprojections.
[Erdmann and Mason] developed a planner which could perform sensorless ma-
nipulation of polygonal objects in a tray. Their planner makes extensive use of a
representation of friction in configuration space [Erdmann]. [Buckley] implemented

33

:,. , ...-.. .. ¢ , ,...., ..
I ''

-
', : , '," ' * * ': o * . : , ' . t .¢ , .. _,.._.. ., yx." e

a multi-step planner for planning compliant motions with uncertainty in ZD with-

out rotations. He also developed a variety of new theoretical tools, including a
combined spring-damper dynamic model, 3D backprojection and forward projec-
tion algorithms, and a finitization technique which makes searching the space of

commanded motions more tractable.

and [Hopcroft and Wilfong] addressed the problem of planning motions in contact,
and proved important structural theorems about the connectivity of the 1-edges of
configuration space obstacle manifolds. [Koutsou] has suggested a planning algo-
rithm which plans along 1-edges. Other planning systems for compliant motion have
been developed by [Turk], who used backprojections, [Laugier and Theveneau], who
use an expert system for geometric reasoning about compliant motion, and [Valade].

Recently, there has been some theoretical work on the complexity of robot
motion planning with uncertainty. [Erdmann] showed the problem to be undecidable
when the obstacles are encoded as a recursive function on the plane. [Natarajan]

has shown the problem to be PSPACC-hard in 3D for finite polyhedral obstacles.

[Canny and Reif] have demonstrated that in 3D the problem of synthesizing a multi-
step strategy is hard for non-deterministic exponential time; in addition, they proved

. that verifying a 1-step strategy is K/P-hard.

1.3.3 Model Error

There is relatively little previous work on planning in the presence of model
uncertainty. [Requicha] and [Shapiro] address representational questions of how to

model part tolerances, and mathematical models for variational families of parts.
[Buckley] considers some extensions of his planner to domains with model uncer-
tainty. [Brooks 82] developed a symbolic algebra system which can constrain the
variable values in skeleton plans, and introduce sensing and motion steps to reduce
these values until the error ranges are small enough for the plan to be guaranteed.

Some of the variables in these plans can represent model error-particularly, the po-
sition of objects in the workspace-and hence his planner can reason about motion
planning in the presence of model uncertainty.

Work on manipulator pushing and sliding [Mason, Peshkini] and squeeze-grasping

[Brost] may be viewed as addressing model error where the error parameters are the
position and orientation of the manipulated part. The operation space of [Brost]
is a clever example how to model actions with uncertain effects, and objects with
uncertain orientation, in the same space. [Durrant-Whyte] considers how to model

-' geometric uncertainty probabilistically, and how to propagate such information in
S". applications related to motion planning.

[Lumelsky] considers the following problem: suppose that a robot has a 2D
configuration space, perfect control and sensing, the obstacles are finite in number,

34
-S"0-

°

%. % Ke
J 5

and each obstacle boundary is a homeomorphic image of the circle. Then a collision
free-path may be found by tracing around the boundary of any obstacles encoun-
tered when moving in a straight line from the start to the goal. At each obstacle
boundary encountered, there is a binary choice of which way to go, and the move
may be executed with perfect accuracy. Lumelsky also demonstrates complexity
bounds under these assumptions, and has considered configuration spaces such as
the plane, the sphere, the cylinder, and the 2-torus. While it is not clear how
this technique can extend to higher-dimensional configuration spaces, it is useful to
compare Lumelsky's approach as an example of how to exploit a useful geometric
primitive (wall-following). See also [Koditschek] for extensions to this approach
using potential fields. The potential-field approach to collision avoidance, as formu-
lated by [Khatib], also can deal with uncertain obstacles, and gross motions around
these obstacles can often be synthesized in real time. [Brooks 851 has described a
map-making approach for a mobile robot in a highly unstructured environment-
i.e., amidst unknown obstacles. His approach allows the robot to aquire information
about the position and shape of these obstacles as the robot explores the environ-

* ment. [Davis] has addressed the mobile robot navigation problem amidst partially
unknown obstacles using an approximate map.

There is almost no work on planning compliant motions or assemblies in the
presence of model error.

1.3.4 Error Detection and Recovery

There has been almost no formal analysis of the EDR problem. STRIPS [Fikes
and Nilsson] has a run-time executive (PLANEX) which embodied one of the first
systems addressing EDR. STRIPS' triangle tables may be viewed as a kind of for-
ward projection. [Ward and McCalla; Hayes] have presented research agendas for
error diagnosis and recovery in domain-independent planning. [McDermott] has
stressed the importance of EDR in plan execution and sketched an approach based

on possible worlds. [Srinivas] described a robot planning system for a Mars rover
* which could detect certain manipulation errors and recover. [Gini and Gini] have

described a view of EDR based on a predetermined list of high-level error types.
The domain-independent planning literature [Chapman] is relevant to the history of
EDR; for example, the planner of [Wilkins] has an error recovery module in which
the executor can detect inconsistecies in the set of logical propositions representing
the world state. At this point, an operator can intervene and type in new proposi-
tions to disambiguate the state and aid recovery. The robots described by [Brooks
85] have an EDR flavor-they are not required to achieve a particular goal, but
merely to attempt it until some other goal takes a higher priority.

Portions of the material in this thesis have been presented in [Donald 86a,b].

" €. 35

•4

'U

[Brost] is employing these EDR techniques in his research on planning squeeze-grasp
operations.

1.4. Map of Thesis

Here is an outline of the remainder of the thesis. The thesis is divided into
six roman-numeral chapters. A parallel arabic section-numbering scheme permits
finer-grain cross-references. Starred (*) sections subsections may be skipped at first
reading if desired.

Chapter II presents the basic issues in EDR. It begins with a discussion of
planning with model error. We introduce a generalized configuration space with
non-holonomic constraints as a key tool. EDR is defined, and given a geometrical
characterization. Experiments, implementation, and computational complexity are
discussed. Chapter II intends to provide a slice of all the most interesting aspects

of this work, while striving for a somewhat informal style of presentation. The end
of the chapter hints at the theoretical issues to come.

The chapters III-V, can be read independently if desired.

Chapter III describes the construction of multi-step strategies in some detail.
Here, we discuss planning using preimages, "push-forward" algorithms, and failure-
mode analysis. These techniques are then unified by introducing the "weak" EDR
theory. Weak EDR is a theory which defines certain laws of composition on motion
strategies. It provides a new framework for studying multi-step strategies; we use
it to derive properties of multi-step EDR plans.

In chapter IV, the EDR theory is applied to the problem of planning sensing

and motion for a mobile robot navigating amidst partially unknown obstacles. We
show how the EDR theory, and generalized configuration space in particular, can
be used to generate strategies in the mobile robot domain.

Chapter V describes implementational and complexity-theoretic issues. We
discuss methods for limiting search in an EDR planner. To this end, we introduce
a combinatorial object call the non-directional backprojection, and analyze its com-

• plexity. Our analysis leads to efficient algorithms for certain subproblems in EDR
planning. In particular, we give an efficient algorithm for planning one-step (guar-
anteed) strategies in the plane. By using results from computational algebra, we
show that planning a guaranteed planar multi-step strategy with sticking termina-

Y-e tion can be decided in time polynomial in the geometric complexity, and roughly
singly-exponential in the number of steps in the plan.

Chapter VI contains conclusions and suggestions for future work.

All readers should be able to read through chapter II. At that point the re-
maining topics can be selected as the reader's taste and preference dictate. I feel the
most interesting and important subsequent material is on the weak EDR theor, (in

36

.4" , : . , , .7 , """ .,. ':'' * '' . - . "; ' -: . "' ""-, : : :.7, .".: : "-"-".> ,"- ," -

the multi-step strategy chapter III). However, readers interested in computational
complexity might prefer chapter V, while moboticists might skip to chapter IV.

The thesis contains three thematic lines of development. The first is theoretical
,, robotics, by which we mean the theory of manipulation and geometrical planning.
*. . This line is strong in chapters II and III. Readers who have seen some of this thesis

material at conferences [D] will find altogether new material in sections 7-15. This
line of development contains the following topics:

* Model error is discussed in detail in sections 2, 6, 9, 11, and 13.
* The basic EDR theory is discussed in sections 3-5, and 7-10.

* Failure-Mode Analysis comes up in section 11.

* The Weak EDR Theory makes its debut in section 12.

* .~.The second theme is complexity and algorithmic issues. These are stressed in
sections 6 and 14.

The third theme is applications, implementation, and experiments. These are
described in sections 6, 7, 10, 11, 13, and 14.1.

*~*5 37

*%.

.1% Z

II. Basic Issues in Error Detection and Recovery

This chapter presents an overview of our theory and experiments in EDR. It
attempts to deliver a slice of all the most interesting aspects of the work, while

striving for a non-demanding style of presentation.

We begin by showing how to represent model error, and explore the physics
of generalized configuration space. Using this representation, we next present the
basic theory behind constructing both guaranteed strategies and EDR plans in the
presence of sensing, control, and model uncertainty.

The implementation of LIMITED is then discussed, along with experiments in
EDR planning.

The chapter closes by proving complexity bounds for EDR planning, and with
an introductory discussion of deeper EDR-theoretic issues. For interested readers,
these discussions are continued and elaborated in considerable detail in chapters V
and III, respectively.

38

Vl..

04

.?J j . ~ * *..* ~ ~ . .*.. .
j. . .! *: 8

Op. ** .

2. Basic Issues in Error Detection and Recovery

2.1. Simple Example of Model Error

We will begin developing the EDR theory by examining some very simple
planning problems with model error. Of course, this does not mean that EDR is
limited to situations with model error.

Example (1). Consider fig. 14. There is position sensing uncertainty, so that
the start position of the robot is only known to lie within some ball in the plane.
The goal is to bring the robot in contact with the right vertical surface of A.

We will simplify the problem so that the computational task is in configuration
space. This transformation reduces the planning task for a complicated moving
object to navigating a point in configuration space. Consider fig. 15. The config-
uration point starts out in the region R, which is the position sensing uncertainty
ball about some initial sensed position. To model sliding behavior, we will assume
Coulomb friction and generalized damper dynamics, which allows an identification
of forces and velocities. Thus the commanded velocity v0 is related to the effective
velocity v by f = B(v - vo) where f is the effective force on the robot and B is a
scalar. Given a nominal commanded velocity vo, the control uncertainty is repre-
sented by a cone of velocities (B,, in the figure). The actual commanded velocity
v0 must lie within this cone. 1

The goal in fig. 15 is to move to the region G. Now, with Coulomb friction,
'- ~sticking occurs on a surface when the (actual) commanded velocity points into the

friction cone. We assume the friction cones are such that sliding occurs (for all
possible commanded velocities in Bec) on all surfaces save G, where all velocities
stick. We will assume that the planner can monitor position and velocity sensors to
determine whether a motion has reached the goal. Velocity sensing is also subject

to uncertainty: for an actual velocity v, the sensed velocity lies in some cone Be,
of velocities about v.

Now we introduce simple model error. The shape of A and B are known
*' precisely, and the position of A is fixed. However, the position of B, relative to A

is not known. B's position is characterized by the distance a. If a > 0 the goal
is reachable. But if a = 0, then the goal vanishes. No plan can be guaranteed to
succeed if a = 0 is possible. Suppose we allow a to be negative. In this case the

, blocks meet and fuse. Eventually, for sufficiently negative a, B will emerge on the
other side of A. In this case, the goal "reappears," and may be reachable again. 2

Let us assume that a is bounded, and lies in the interval [-do, do].

'See [Mason 81] for a detailed description of generalized damper dynamics.
2 This model is adopted for the purposes of exposition, not for physical plausibility. It is

not hard to model the case where the blocks meet but do not fuse.

39

% .N

-- ,-%

.

Our task is to find a plan that can attain G in the cases where it is recognizably
reachable. Such a plan is called a guaranteed strategy in the presence of model error.
But the plan cannot be guaranteed for the a where the goal vanishes. In these
cases we want the plan to signal failure. Loosely speaking, a motion strategy which

, ,achieves the goal when it is recognizably reachable and signals failure when it is
not is called an Error Detection and Recovery (EDR) strategy. Such strategies are
more general than guaranteed strategies, in that they allow plans to fail.

Before we attack the problem of constructing guaranteed strategies and EDR
strategies (both in the presence of model error) let us consider the examples we
have seen so far. Although in these examples model error has been represented by
a kind of parametric "tolerancing", the planning framework can represent arbitrary
model error. For example, we could represent CAD surfaces with real coefficients,
and allow the coefficients to vary. Discrete and discontinuous model error may
also be represented. Finally, note that we permit gross topological changes in the
environment-for example, the goal can vanish.

2.2. Representing Model Error

- To represent model error, we will choose a parameterization of the possible
variation in the environment. The degrees of freedom of this parameterization are
considered as additional degrees of freedom in the system. For example, in fig. 15,
we have the x and y degrees of freedom of the configuration space. In addition, we
have the model error parameter a. A coordinate in this space has the form (x, y, a).
The space itself is the cartesian product R2 x [-do, do]. Each a-slice of the space
for a particular a is a configuration space with the obstacles A and B instantiated
at distance a apart. Fig. 15 is such a slice.

More generally, suppose we have a configuration space C for the degrees of
freedom of the moving object. Let J be an arbitrary index set which parameterizes
the model error. (Above, J was [-do, do]). Then the generalized configuration space

* with model error is C x J. One way to think of this construction is to imagine a
collection of possible "universes", { C,, } for a in J. Each C , is a configuration space,
containing configuration space obstacles. The ambient space for each C0, is some

'.4.

canonical C. C x J is simply the natural product representing the ambient space of
their disjoint union. There is no constraint that J be finite or even countable. In fig.
3, C is again the cartesian plane, and J is a three-dimensional product space. One
of the J dimensions is circular, to parameterize the angular variation represented
by a 3.

In fig. 16 we show the generalized configuration space for example (1). Note
that the goal in generalized configuration space becomes a 2-dimensional surface,

40

IN N

Start Poskion lies is this circl

0RONe

2
K T Gau lieslam titl surface of A F B]

V
aI 0

Fig. 14. The goal is to bring the robot into contact with the right vertical
surface of A. (For example, the "robot" could be a gripper finger). There is
position sensing uncertainty, so in the start position the robot is only known
to lie within some uncertainty ball. There is also control uncertainty in the
commanded velocity to the robot. It is represented as a cone, as shown.

and the obstacles are 3-dimensional polyhedra. Note that the goal surface vanishes
where A and B meet.

Given a configuration space corresponding to a physical situation, it is well
known how to represent motions, forces, velocities, and so forth in it (eg., see

[Arnold]). The representations for classical mechanics exploit the geometry of dif-
ferentiable manifolds. We must develop a similar representation to plan motions,
forces, and velocities in generalized configuration space. Henceforth, we will denote
the generalized configuration space C x J by 9. We develop the following "axioms"

for "physics" in C.

(1) At execution time, the robot finds itself in a particular slice of 9, (although it

41

IVN0 O I

V V
0

V ;

r r

Q-~ A

" Fig. 15. The equivalent problem in configuration space. The blocks A and B,

the distance between the blocks a, and the commanded velocity ve = vo with
~control error cone Bec(vo*). The position of A is fixed.

may not know which). Thus we say there is only one "real" universe, a0 n

J. This a0 is fixed. However, a0 is not known a priori. Thus all motions are

" confined to a particular (unknown) a0-slice, such as fig. 15. This is because

~motions cannot move between universes. In fig. 16, any legal motion in ig is

@ everywhere orthogonal to the J-axis and parallel to the -y plane.
(2) Suppose in ay a-slice the position sensing uncertainty ball about a given

sensed position is some set Bp . The set R in fig. 15 is such a ball. We cannot

sense across J: position sensing uncertainty is infinite in the J dimensions. 4

Thus the position sensing uncertainty in 9 is the cylinder Bep x J. In figs.

@, '15,16, this simply says that x and y are known to some precision, while a is
-' i unknown. The initial position in fig. 15 is given by R x [-do, do]. This cylinder

30

Fo is a point in the multi-dimensional space J.

t One generalization of the framework would permit and plan for sensing in J. In this
case one would employ a bounded sensing uncertainty ball in the J dimensions.

* eerwhee rtogoalto heJ-xisan paalelto hez-yp4ne

• 1-- t v. .- , - .- f , r. - -v - . w : w . *- -. , - . .

Gi
,1

Fig. 16. The generalized configuration space obstacles for example (1). The
generalized configuration space is three dimensional, having z and y degrees of
motion freedom, and an a degree of model error freedom. Legal motions are
parallel to the z-y plane, and orthogonal to the J axis.

is a 3-dimensional solid, orthogonal to the z-y plane and parallel to the J-axis
in fig. 16.

(3) Suppose in the configuration space C, the velocity control uncertainty about a
given nominal commanded velocity is a cone of velocities Be. Such a cone is
shown in fig 15. This cone lies in the phaae-jpace for C, denoted TC. (Phase
space is simply Position-space x Velocity-space. A point in phase space has
the form (z, v), and denotes an instantaneous velocity of v at configuration
z). Phase space represents all possible velocities at all points in C. The phase
space for 9 is obtained by indexing TC by J to obtain TC x J. All velocities

in generalized configuration space lie in TC x J. For Ex. (1) TC x J is
R" x [-do, do]. The generalized velocity uncertainty cones are two-dimensional,
parallel to the z-y plane, and orthogonal to the J axis.

43

%

I!,-,....-.-... ,, .,-.-.-.--.-.-,---.-.'-....,.r._,,. ,.,"" '" ' f"

I4

(4) Generalized damper dynamics extend straight-forwardly to 9, so motions sat-
isfy f = B(v - vo) where f, v, and v0 lie in TC x J. Thus friction cones from
configuration space (see [Erdmann]) naturally embed like generalized velocity
cones in TC x J.

These axioms give an intuitive description of the physics of 9. A formal axiom-
atization is given in an appendix. We have captured the physics of Q using a set of
generalized uncertainties, friction, and control characteristics (1-4). These axioms
completely characterize the behavior of motions in C.

2.3. Representing Pushing Operations in Generalized Configuration
Space

By relaxing axiom (1), above, we can consider a generalization of the model
- error framework, in which pushing motions are permitted, as well as compliant

and gross motions. We relax the assumption that motion between universes is
impossible, and permit certain motions across J. Consider example (1). Observe
that a displacement in J corresponds to a displacement in the position of the block

B. Thus a motion in J should correspond to a motion of B. Suppose the robot can
change the position of B by pushing on it, that is, by exerting a force on the surface
of B. The key point is that pushing operations may be modeled by observing that
commanded forces to the robot may result in changes in the environment. That
is, a commanded force to the robot can result in motion in C (sliding) as well as
motion in J (pushing the block). Let us develop this notion further.

Our previous discussion assumed that motion across J was impossible. That is,
all motion is confined to one a-slice of generalized configuration space. In example
(1) this is equivalent to the axiom that B does not move or deform under an applied
force. Such an axiom makes sense for applications where B is indeed immovable,
for example, if A and B are machined tabs of a connected metal part. However,
suppose that B is a block that can slide on the table. See fig. 17. Then an applied
force on the surface of the block can cause the block to slide. This corresponds to

* motion in J. In general, the effect of an applied force will be a motion which slides
or sticks on the surface of B, and which causes B to slide or stick on the table. This
corresponds to a coupled motion in both C and J. When the motion maintains
contact, it is tangent to a surface S in generalized configuration space.

- Our goal is to generalize the description of the physics of 9 to permit a rigorous
account of such motions. This model can then be employed by an automated
planner. Such a planner could construct motion strategies whose primitives are

d:a gross motions, compliant motions, and pushing motions.

5Our model of pushing is less general than [Mason, 82], since it requires knowledge of
the center of friction. See an appendix for details.

44

04%
'WPAW*

./ I.

" Fig. 17. A force I. applied to the top surface of B can cause sliding (or sticking)

on the top of B, coupled with motion of B on the table. This corresponds toa
pushing motion in C. By giving the right geometric structure to the surface S,

we can predict the resulting cone of motions in C, given a commanded velocity
f. subject to control uncertainty. A planner could generate a motion along S in
order to plan pushing operations.

-- -- - - - - - - -

~The description of the physics should embrace the following observations:
* The phase space for C corresponds to forces exerted at the center of mass of

~the robot. The phase space for J corresponds to forces acting at the center of mass

- of B. When pushing is allowed, the phase space for generalied configuration space
. is not TC x I but TC x TI. In the pushing application, all forces are exerted

• ,1 in C, but may be "transferred" to I via the contact. In other words, the applied
Sforces we consider will have zero component along I. However, they may result in

. a motion in I, via the transferred pushing force.
F. In free space, or on surfaces generated by immovable objects, all differential

motions the within one te-stace. This is because objects can only be pushed whenwe the robot is in contact with them.

04

fesbett oto nerany lne ol enrt oinaogSi

orert pla puhn oprations.

Th ecitino h phyic shul embrac the' folwn obsrvain::'

The ~ ~ ~ ~ ~ a, phase spc fo *orsod ofre xre ttecne fmso

ii

,goliWI fs", tn""M mle to C ao .

I.

N

Fig. 18. Pushing on the side of B can cause B to slide, even in the absence
of friction. This behavior can be modeled by giving the surface S a normal
which points across J. The surface can exert reaction forces along this normal.
Thus, applying a force in C results in a reaction force with a J component. The
resulting motion moves across J, tangent to S. That it, it pushes the block.
Friction can also be introduced on S. A picture of the friction cone developed
in an appendix is shown. It represents the range of reaction forces the surface S
can exert.

0

'Along surfaces generated by objects that can be pushed, the differential motions
*. are tangent to the surface in g, and may move along J as well as C. See fig. 17.

A motion in free space corresponds to a gross motion. A motion on a surface
staying within one a-slice corresponds to a compliant motion. A motion on a surface
which moves across J corresponds to a pushing motion.

Configuration space surfaces share many properties with real space surfaces.
When pushed on, they push back. In particular, they have a normal. In the abscnce
of friction, they can exert reaction forces only along this normal direction. We
must define what the normals to generalized configuration space surfaces are. For

46

4*4i

example, see fig. 18. The normal is transverse to J, so that even when the applied
force lies exclusively in C, the surface exerts a reaction force with a J component.
Thus the resultant force can cause a motion across J, tangent to S. In fig. 18 this

-... implies that pushing on the side of B results in a transferred force to J, causing
B to slide. In generalized configuration space, this is simply viewed as applying a
force to a surface S, which exerts a reaction force across J. Since the resultant force
is across J, the motion in g will be in that direction (under damper dynamics).

The physics is complicated by the introduction of friction. Given an applied
force, one of four qualitative outcomes are possible. (1) The motion may slide in
C and J. This corresponds to pushing while sliding6 at the point of contact. (2)

P The motion may stick in C and slide in j. 7 This corresponds to pushing with no
*relative motion. (3) The motion may slide in C and stick in J. This corresponds

to compliant motion in one a-slice. (4) The motion may break contact. This
corresponds to the initiation of gross motion in one a-slice.

In order to generalize physical reasoning to generalized configuration space, we
must provide a generalization of the configuration space friction cone [Erdmann] for
generalized configuration space. The friction cone represents the range of reaction
forces that a surface in generalized configuration space can exert. A picture of this
generalized cone is shown in fig. 18. Using the friction cone, it is possible to specify
a geometrical computation of reaction forces. Such an algorithm is necessary for
a planner to predict the possible resulting motions from an uncertainty cone of
commanded applied forces. For example, see fig. 17.

By characterizing the physics of pushing and sliding via geometrical constraints
in generalized configuration space, it appears that a unified planning framework for
gross-, compliant-, and pushing motions emerges. However, certain aspects of the
physics require elaboration and simplification before a practical planner for pushing
operations can be implemented; see an appendix for details.

* 2.3.1 Example: The Sticking Cone

This starred subsection may be skipped at first reading.
As an example of how a planner could reason about friction in generalized

configuration space, see fig. 19. Here we take the configuration spaces of the robot

and of B to be cartesian planes. (See fig. 14 to recall the definition of the robot
and B). Assume that we can apply a two dimensional force f, on the robot, and
a two dimensional force fj at the center of mass of B. (This assumption is for the
sake of discussion; in pushing applications, fj would be zero). The friction cone

V." 6 0r rotating.
7 This outcome is not possible in the example with block B, since if B moves, this causes

motion in C and in J.

47

04

%O%

Si.

'I

Fig. 19. Assume a fixed, negative normal force at the center of mass of B.
The 3D force space at " represents the product of the 2D forces fc that can be
exerted by the robot on the surface of B, with the ID tangential forces fj that
can be exerted at the center of mass of B. An applied force (fe, fj) in the cone
represents a combination of forces that causes no motion in 9, that is, neither
sliding on the surface of B, nor of B on the table. Note that the cone in 9 is
.skewed out of the embedded tangent space to C at x. This is because when
a force fc is applied in the friction cone on the top surface of B, the block B
can slide unless an opposing force is exerted tangentially at the center of mass

* of B. By intersecting the sticking cone with the negative velocity cone, we can
determine whether sticking is possible on S.

in generalized configuration space will then be four-dimensional. This is hard to

draw; we have selected a fixed, negative normal component for fj. The 3D force

space at the point of contact " represents the product of the 2D forces that can be
exerted by the robot on the surface of B, with the 1D tangential forces that can be

'- applied at the center of mass of B. An applied force (fc, fj) in the negative of the
cone in fig. 19 represents a combination of forces that causes no motion in Q, that

48

55'

is, neither sliding on the surface of B, nor of B on the table. Note that the cone
in Q is skewed out of the embedded tangent space to C at x (denoted TC in the
figure). This is because when a force fc is applied in the friction cone on the top
surface of B, the block B can slide unless an opposing force is exerted tangentially
at the center of mass of B.

Let us call the cone in fig. 19 the sticking cone k. Using the sticking cone, we
can now specify a geometrical computation to determine when sticking occurs at
7, assuming generalized damper dynamics: Simply intersect the negative velocity
control uncertainty cone -B,,(v) with K. If the intersection is trivial, then sticking
cannot occur. If the intersection is non-trivial, then sticking can occur. If the
negative velocity cone lies inside K, then sticking must occur.

This shows that the computation to determine whether sticking is possible at
a point reduces to simple geometric cone intersection.

Now we return to the pushing application, by restricting the applied force fj
in J to be zero. See fig. 19. Assume it is impossible to apply force at the center
of mass of B. Therefore, the velocity cone is two dimensional and lies entirely in
the tangent space to C at x; it has no J component. This two-dimensional cone is
intersected with the 3D cone K to determine whether sticking is possible at F.

Let us emphasize that by insisting that the force fj applied in J be zero, we
obtain a two-dimensional control uncertainty cone, even though generalized config-
uration space has four degrees of freedom. Thus, in the model error framework, the
generalized control uncertainty can be viewed as a non-holonomic constraint. Holo-

nomic constraints are constraints on the degrees of freedom of the moving object(s);
non-holonomnic constraints are constraints on their differential motions. Holonomic

-constraints can be captured by surfaces in (generalized) configuration space. To
capture non-holonomic constraints geometrically, we must introduce constraints in
the phase space. This viewpoint is developed in an appendix, where we provide a
more rigorous account of the construction of normals, friction cones, sticking cones,

and the computation of reaction forces in generalized configuration space.

* 2.4. Guaranteed Plans in Generalized Configuration Space

A motion strategy [LMT] is a commanded velocity (such as vo in fig. 15)
together with a termination predicate which monitors the sensors and decides when
the motion has achieved the goal. Given a goal G in configuration space, we can

* form its preimage [LMT]. The preimage of G is the region in configuration space
from which all motions are guaranteed to move into G in such a way that the entry
is recognizable. That is, the preimage is the set of all positions from which all

possible trajectories consistent with the control uncertainty are guaranteed to reach
G recognizably. For example, see fig. 20. The entry is recognized by monitoring

49

04

4 . -..4,.'; ,.'. .,2',.',?'. .'....." -". . .- : , .. ' -:

%#'N

/

/ \

/\

/ \

-e

Fig. 20. The goal is the region G. Sliding occurs on vertical surfaces, and sticking
on horizontal ones. The commanded velocity is v , and the control uncertainty
is B,,(v;). The preimage of the G with respect to 0 is the region P.

the position and velocity sensors until the goal is attained. Fig. 20 is a directional

preimage: only one commanded velocity v; is considered. Here all preimage points
reach the goal recognizably under this particular v;. The non-directional preimage
is the union of all directional preimages.

.0" We envision a back-chaining planner which recursively computes pre-images
of a goal region. Successive subgoals are attained by motion strategies. Each
motion terminates when all sensor interpretations indicate that the robot must be
within the subgoal. [LMT,E] provide a formal framework for computing preimages

7 where there is sensing and control uncertainty, but no model error. In particular,

V'. [Erdmann] shows how backprojectionw may be used to approximate preimages. The
backprojection of a goal G (with respect to a commanded velocity v;) consists of
those positions guaranteed to enter the goal (under v;). Recognizabilit f the
entry plays no role. Fig. 21 illustrates the difference between backprojecti,,,,- and

50

0i4,..,- 7

-1

IMR --.um W-- RWW

Be (6e

o,.-
1 P/(G)

* 4 G

*Fig. 21. Here, the radius of the position sensing uncertainty ball is twice the
width of the hole. Sliding occurs on all surfaces under the control velocities

e- shown. The preimage of the goal under commanded velocity v; is PO(G). The
backprojection B,(G) strictly contains this preimage: while all points in the
backprojection are guaranteed to reach G, the sensing inaccuracy is so large
that the termination predicate cannot tell whether the goal or the left hori-
zontal surface has been reached. Only from the preimage can entry into G be

1. recognized.

* preimages. Here the radius of position sensing uncertainty is greater than twice the
Ndiameter of the hole. Sliding occurs on all surfaces. Furthermore, we assume that

the robot has no sense of time (i.e., no clock)-for example, it might be equipped
with a contact sensor that only fires once. The back projection BO(G) strictly
contains the preimage P.(G). while all points in the backprojection are guaranteed
to reach G, the sensing inaccuracy is so large that the termination predicate cannot

. tell whether the goal or the left horizontal surface has been reached. Only from the
preimage can entry into G be recognized.

-4 Preimages provide a way to construct guaranteed plans for the situation with

51

O.4

*4I.:

4fG)

i Fig. 22. The backprojection of the goal surface G in generalized configuration
space for commanded velocity v; is denoted BO(G). Here is the backprojection
for a positive. A typical a-slice of the backprojection is shown below.

*no model error. Can preimages and backprojections be generalized to situations
with model error? The answer is yes. Consider fig. 15,16. The goal in generalized
configuration space is the surface G (which has two components). The start region
is the cylinder R x J (where J is [-d 0 ,do]). The generalized control and sensing

* uncertainties in 9 are given by the physics axioms above. These uncertainties
completely determine how motions in generalized configuration space must behave.
We form the backprojection of G under these uncertainties. The backprojection has
two components, shown in fig. 22,23. It is a three-dimensional region in g of all

0triples (z, y, a) that are guaranteed to reach G under the control uncertainty shown
in fig. 15. Equivalently, we can view it as all points in C guaranteed to reach G under
the generalized uncertainties that specify 9's physics. Note that backprojertioLUs do
not "converge to a point" along the J axis (compare fig. 20). This is because there
is perfect control along J, and the commanded velocity along J is zero. This is why

.. -.. 52

W. orQ yCuE- e e~ .~~.~

s &4*l le ~ .A~ %-

G

4% ., . Fig. 23. The backprojection of the other component of G. A typical a-slice for

a negative is shown below. The backprojection in 9 of the entire goal surface is

in this particular 9 there are two disjoint backprojection regions, one from each
component of G. Furthermore, recursively-computed backprojections can never
cover--or even intersect-any slice of C in which the goal vanishes.

The trick here was to view the motion planning problem with n degrees of
motion freedom and k degrees of model error freedom as a planning problem in
an (n + k)-dimensional generalized configuration space, endowed with the special
physics described above. The physics is characterized precisely by axioms defining
certain special sensing and control uncertainties in Q. The definitions and results for
pre-images and backprojections [LMT,E] in configuration space generalize mutatis
mutandus to g endowed with this physics; this is proved in an appendix(A.3). Thus

our framework reduces the problem of constructing guaranteed motion strategies
with model error to computing preimnages in a somewhat more complicated. Snd
higher-dimensional configuration space.i

53

In this example, because the position of B varies linearly with a, the surfaces

in g are planar and the generalized configuration space obstacles are polyhedral.
Below, in sec. 6, we give polynomial-time algorithms for computing these backpro-
jections. While they have been computed by hand here, note that this reduction
gives us an efficient planning algorithm for an important special case.

'p

.45

p

6I

a..4

3. Error Detection and Recovery

If we were exclusively interested in constructing guaranteed motion strategies
in the presence of model error, we would be done defining the framework: having
reduced the problem to computing preimages in j, we could now turn to the im-
portant and difficult problems of computing and constructing Q, and further extend
the work of [LMT,E] on computing preimages in general configuration spaces.

However, guaranteed strategies do not always exist. In example (1), (figs. 14-
16) there is no guaranteed strategy for achieving the goal, since the goal may vanish
for some values of a. Because tolerances may cause gross topological changes in
configuration space, this problem is particularly prevalent in the presence of model
error. In the peg-in-hole problem with model error (figs. 3-13) the goal may also
vanish (the hole may close up) for certain regions in J. More generally, there may
be values of a for which the goal may still exist, but it may not be reachable.
For example, in a variant of the problem in fig. 3, an obstacle could block the
channel to the goal. Then G is non-empty, but also not reachable. Finally, and

* most generally, there may be values of a for which the goal is reachable but not
%. recognizably reachable. In this case we still cannot guarantee plans, since a planner

cannot know when they have succeeded.

These problems may occur even in the absence of model error. However, with-
out model error a guaranteed plan is often obtainable by back-chaining and adding
more steps to the plan. In the presence of model error this technique frequently fails:
in example (1), no chain of recursively-computed preimages can ever cover the start

region R x J. The failure is due to the peculiar sensing and control characteristics
(1-4) in generalized configuration space .

In response, we will develop Error Detection and Recovery (EDR) strategies.

Tbese are characterized as follows:

0 An EDR strategy should attain the goal when it is recognizably reachable, and
signal failure when it is not.

, • It should also permit serendipitous achievement of the goal.
. Furthermore, no motion guaranteed to terminate recognizably in the goal

should ever be prematurely terminated as a failure.

* Finally, no motion should be terminated as a failure while there is any chance
Si ,that it might serendipitously achieve the goal due to fortuitous sensing and

control events.

These are called the "EDR Axioms", they will be our guiding principles. Can

we construct such strategies? The answer is, basically, yes. Let us construct one for

55

04Z
foq.

R

'3R

3..F

F~ _ A i

H

Fig. 24. A typical a-slice of the forward projection of the "bad" region. The
forward projection is the region F. a is negative and almost zero. H is an EDR
region in the forward projection.

a variant of example (1). We first restrict our attention to the environments where
a lies in the interval [dl, do] where d, is small and negative.'

Call the start region U = R x J. The strategy of example (1) commands velocity
v; (fig 15). It tries to terminate the motion in G by detecting sticking. Call this
strategy 9. We will use 9 as a starting point, and try to build an EDR strategy
from it. Now, U is divided into a "good" region, from which 0 is guaranteed, and a
"bad" region, from which it is not. The goal vanishes for the bad region. We wish
to eztend 0 to an EDR strategy from all of U.

Let us investigate the result of executing 0 from the "bad" region. We employ
@,O9_ the forward projection [Erdmann]. The for aord projection of a set V under a is all

'See fig. 15. Formally, if w is the width of A and B, and e is the position sensing

uncertainty, then IdiI < min(w, '). Otherwise, if a can be arbitrary, no strategy canalways distinguish the right edge of A from the right edge of B!

56

04

I,... -.. . , --

~~ (~~.yp~~ ~~~4,3 V%% 291. ~ ,~.-,. *'-.. .

configurations which are possibly reachable from V under vo (subject to control

uncertainty). It is denoted Fe(V). Forward projections only address reachability:
the termination predicate is ignored and only the control uncertainty bound and
commanded velocity vo are needed to specify the forward projection.

Fig. 24 shows a typical a-slice of the forward projection of the "bad" region.
The goal vanishes in this slice; the dashed line indicates where the goal would
be in other slices. We can now define an EDR strategy as follows. Consider the
region H in fig. 24. The termination predicate can distinguish between G and
H based on position sensing, velocity sensing, or elapsed time.3 Consider H as a
two-dimensional region in g; just a slice of it is shown in fig. 24. Note that in
this example, H only exists in the slices in which G vanishes. Thus the motion is
guaranteed to terminate recognizably in G iff the motion originated in the "good"
region of U. Otherwise the motion terminates recognizably in H. In the first case,

g' the termination predicate signals success, in the latter, failure.

Clearly this EDR strategy satisfies the "EDR axioms" above. The problem
of constructing EDR strategies may be attacked as follows: We take a strategy 9
as data. Next, an EDR region H is found. H is introduced as a "bad goal", and
a strategy is found which achieves either G or H (subject to the EDR axioms).
Finally, we must not only recognize that G or H has been attained, but also know
which goal has been reached.

Now, think of 0 as indexing the "angular direction" of the commanded veloc-
ity. By quantifying over all 0, we can in principle define "non-directional" EDR
strategies. This problem is similar to constructing non-directional preimages. For
now, we restrict our attention to one-step plans. Later, we consider n-step plans.

3.1. Generalizing the Construction

We now present an informal account of how the construction of EDR regions
and strategies may be generalized. Do not be alarmed if some of our examples
are without model error. Since we have reduced the planning problem with model
error to planning in a (different) configuration space, it suffices to consider general

0
I0 -- configuration spaces in this discussion.

So far the preimages we have considered are strong preimages, in that all possi-
- "ble motions are guaranteed to terminate recognizably in the goal. The weak preim-

age [LMT] (with respect to a commanded velocity) is the set of points which could
possibly enter the goal recognizably, given fortuitous sensing and control events. See
fig. 25. We will use the weak preimage to capture the notion of serendipity in the

""'"" 2 Actually, forward projections are in phase-space, so this is the position component of
the forward projection.

3 Given the sensing uncertainties of example (1).

%-' 57

04

: . , ., : - . . .: , : - . . -- : : . . : : . ..: . . .

bP

AG

egres frmtewa riaei eonzd

\ /

% /
\ /

Now. cosdrfg 6 suesiigocr ntevria deadsikn

on /"\P /

\/,

0 G

t s Fig. 25. The weak preimage of the goal G under v;. Compare fig. 20.
,-,-

EDR axioms. The idea is that a motion may be terminated in failure as soon as
egress from the weak preimage is recognized.

Now consider fig. 26. Assume sliding occurs on the vertical edges, and sticking
on the horizontal ones. The (strong) preimage of the goal G is denoted P. A

V motion strategy 8 with commanded velocity v; is guaranteed for the region R', but
the starting region is the larger' R. The weak preimage of G is denoted P6. The

9_ forward projection of the "bad" region R - R' is F.(R - R'). In fig. 26, it is in
* - fact equal to F,(R). Using 8 as data, how can we construct an EDR strategy that

-is applicable for all of R? Let us first try taking the EDR region H = H0 , where
H0 is the set difference of the forward projection of the "bad" region and the weak
preimage:

Ho = F*(R- R')-P. (1)

4Note that in general, R and R' need not be cylinders, but can be arbitrary subsets of

58

0

* ~~~ylnes arbitrary$j~~~ *~~\~~.W ~\Wf
- .~.cAn

+p -* A
1 & i

IP P

0 R

A9\ / ' \ /
\/ \

\ / I\/
R/1D / / \ F(R)

i H \ M \7

G

Fig. 26. R is the start region. P is the strong preimage of G. R' is the region in
R from which the strategy is guaranteed to reach G recognizably. P is the weak
preimage. H is the forward projection of R outside the weak preimage. It is the

EDR region.

If we can distinguish between G and H, then H is a good EDR region, and we have
constructed an EDR strategy.

Taking H = H0 as above is not sufficiently general. Consider fig. 27. It is
possible for a motion from R to stick forever in the region H., which is within the
weak preimage. However, a motion through H. is not guaranteed to stick in H,:
it may eventually slide into the goal. We want sliding motions to pass through H,
unmolested, while the termination predicate should halt sticking motions in H..

6@ The EDR region H region should include H0 . But it should also include H.,
when sticking occurs. In other words, H should include H0 for all velocities, but
should only include H. for sticking velocities (that is, zero velocities). To handle
this idea we introduce simple velocity goals, as well as position goals. The position
and velocity goals are regions in phase space.

59

0I,'
.p

9.. w v

I N
P R P

/ R

//

\ / / \ /

t i F(R)
H I \ / \/

F 2\ i R i S in \

P "

* G
Fig. 27. He in eq. (1) is not the entire EDR region. Sticking may occur within

the weak preimage in Hs. The EDR region must include HO for all possible
velocities, and H. for "sticking velocities."

A goal in phase space is a region in Position-space x Velocity-space. A phase
space goal is attained when the actual position and velocity can be guaranteed to
lie in the region. Let us construct the phase-space EDR region f. If z is in H0 ,
then for any velocity v at x, (z, v) must be in H. Let 7r-(H 0) denote all such (x, v)
in phase-space.

Now, H. is the set of all points x in the weak but not strong preimage, such
-: that sticking can occur at x.5 We wish to distinguish the sticking velocities in H..

Under generalized damper dynamics, these are essentially the zero velocities. Let
Z(H.) denote the zero velocities over H, that is, the set of pairs (x,0) for : in H..

Si' This set is in phase space. Then we see that Z(H.) is also in the phase space EDR
region H. Thus H is the union of the sticking velocities over H., and all velocities

over the forward projection outside the weak preimage:

S[Erdmann shows how to decide whether x E H. using configuration space friction cones.

/" '60

U'VI

U,,.. .,' ''-' - " - """"""". """"""""""•" " """""' . - ''..,"", , .. '. % . *, ' , % -,.l" , -<
,

"'..-"',.,' " ,,""

I

-" p

P-P
A /

\ /

\ J /

H

I, HHe
SHe--

P

G

..

Fig. 28. The weak but not strong preimage P - P, from fig. 27. Can a motion
from R remain in P - P forever? One way this may happen is by sticking in

H.. In general, however, there are other ways.

A

ff = Z(H,) U 7-(Ho0). (2)

To use f as an EDR region, we must now ensure that H and the cylinder over

* G are distinguishable goals. In an appendix, we show that if the strong preimage is

known, the definition of (phase space) EDR regions is contructive up to reachability.

By this we mean that when backprojections, set intersections and differences, and

- friction cones can be computed, then so can Hf. With ft in hand, we add the

recognizability constraint to obtain an EDR strategy.

The structure of the "weak but not strong preimage," P P suggests a number

of implementation issues. Consider figs. 27,28 once more. Suppose we have a

trajectory originating in R, subject to the control uncertainty shown. We do not
wish to terminate the motion while it remains in the weak preimage, since fortuitous

sensing and control events could still force recognizable termination in G. Howev, -i

4.

we can terminate the motion as soon as we recognize egress from the weak preimage.
This is why the forward projection outside the weak preimage is contained in the
EDR region.

As we have seen, however, it is possible for a trajectory to remain within the
weak but not strong preimage forever. For example, it can stick in H. forever. To
handle this case, we introduced phase space EDR goals.

There are other conditions under which a trajectory could stay in P forever:
(a) if the environment is infinite, or P - P is unbounded. (b) The trajectory "loops"
in 5 - P forever. (a) and (b) are qualitatively different from the case of sticking
forever in H., because they require motion for infinitely long. In practice this may
be handled by terminating the motion in P - P after a certain elapsed time. We
can model this case by constructing termination predicates which "time-out." In
fact, this "solution" works for sticking in H. also.

An alternative is to extend our earlier zero-velocity analysis to all of P - P.
That is, we terminate the motion in the weak but not strong preimage when the
actual velocity is (close to) zero. It seems that time-out termination predicates
and/or velocity thresholding must be used to solve the looping problem. Both
solutions seem inelegant; the issue is subtle and is addressed further in a later
section.

62

I d

, .f.: .o.-. . '-.. o.- - . - .- 5.. . . . , . . ,. tq_. . of i .4, . '2 ",' -" " " 4' ' ""'- ' ' -,-. . '. . ' -

,tS

.%"

IG

Fig. 29. There are two possible universes; the goal G exists in the first but
.3 not the second. The start region is R1 U R2. Motion 6 is guaranteed to move
, from R1 into S1.Motion i is guaranteed to move from Si into f. There is an

8-step plan achieving G from R1 . The forward projections of R, and R2 are
indistinguishable. There exists no one-step EDR strategy from the motion e.

4. Generalization to n-Step EDR Strategies

4.1. The "Twin Universe" Example

Example (3). So far we have only considered one-step EDR strategies. We
now generalize the construction to n-step strategies. Consider fig. 29. Here there
are two possible universes, both in the plane, so J is the two element discrete set,
{ 1, 2 }. The start region is the union of R1 in universe 1, and R2 in universe 2. The
goal exists in universe 1 but not in universe 2. There is no one-step EDR strategy
which, from the start region, can guarantee to achieve G or recognize that we are in
universe 2. In particular, there is no one-step EDR strategy which can be derived
from the motion v;.

63

4

,, A,,a , , ,\ ,,,_., ., , ... ,. i . ,. ., . ., ,, . , : ., ,,'- ,, , " . .U"*' , ,*,0 '

There is an 8-step phan in universe 1 which recognizably achieves G from start
region R 1. It is obtained by back-chaining preimages in universe 1. The plan moves
from R, to the region S, under v*. Then it slides along the top surface to vertex f
and then to the successive vertex subgoals e through a, and finally into G. We can
construct a 2-step EDR strategy, from this plan. First, we execute motion 8 from

- the union of R, and R 2 . This achieves a motion into S1 in universe 1, or into S2 in
- - universe 2. The termination predicate cannot distinguish which has been attained.

Suppose the second motion in the 8-step plan is v (see fig. 29), and is guaranteed
to achieve the vertex subgoal f from start region S1. We will try to construct an
EDR strategy out of this second motion. Take as data: the subgoal f, the start
region S, U S2, the "southwest" motion 0/, and the preimage of f under 0b. The
EDR region for these data is the forward projection of S2 under ik (see fig. 30).
Presumably this EDR region is distinguishable from f, and so we have constructed
an EDR strategy at the second step. After executing the second step, we either

* terminate the plan as a failure, or proceed to vertex e, and eventually to the goal.
There is a subtle issue of where to terminate the motion within the forward pro-

* jection of R, U R 2 ; this "where" is S1 US52 here, and is called the push-forward. Since
they address termination, push-forwards are to forward projections as preimages are

* . to backprojections. In chapter III and an appendix, they are defined formally and
the n-step EDR construction is given in detail.

64

m, o%

% % .

. ,

Unven 2

Fig. 30. The forward projection under 0 of S2 .

z 5. What is "Recovery"

So far, we have taken a "radical" view with respect to "Recovery." We assume
that in planning for error and recovery, one essentially specifies the maximum length
p .n one is willing to contemplate. The EDR planner considers the class of n-step
strategies and tries to formulate a plan that will achieve the goal given the sensing,
control, and model uncertainty.' Perhaps such a plan can be guaranteed. If not,
then termination in an EDR region would signal failure. This means that there was
no guaranteed n-step plan. (A third possibility is that G and H are never distin-
guishable at any of the n steps. This means that there is no EDR plan). If there
is no guaranteed n-step plan, and some EDR region H is recognizably achieved,
the recovery action might then be "give up," or "try again, using up the remaining

'Of course, one could in principle search for strategies of increasing length by quantifying
, over n. At any one time, however, one would reduce to the case described here and

iterate.

65

04.

number of steps in the plan," if we are serious in refusing to contemplate plausi
longer than n steps. As a corollary, the only "'Error." then, is "being in the wrong
universe." or more accurately, "being in the wrong start region." This viewpoint
is a consequence of trying to address EDR and completeness simultaneously. More
concretely, suppose we consider some sensory-control-geometric event to be an "er-
ror," make a plan to detect it, and a recovery plan in case it is detected. If the
plan can be guaranteed, then it can be found using [LMT]. In this case the "error"

is no longer an error, but simply an "event" which triggers a conditional branch
of the plan.2 If the plan cannot be guaranteed. then we have proposed the EDR
framework, which allows us to try it anyway. If it fails, however, the only obviolis

recovery action entails the recursive construction of EDR sub-plans i see below I It
is not clear what other kinds of recovery could be attempted without exploitinig
additional knowledge: the recovery branches have already been tried. The issiie L%
subtle, and deserves further attention.

We give one example which highlights the complexity of the recovery problem.

Suppose that we consider the class of 4-step plans. Given a 4-step plan as 'ata.
suppose we construct a multi-step EDR strategy which pushes forward on the first
motion, and executes an EDR strategy on the the second. After executing the

second motion, we have recognizably either achieved the second subgoal. or some
EDR region H. If H is achieved, what is the correct recovery actio'n Ve could

do nothing, and signal failure. Alternatively. we could try to construct a plan of

length less than or equal to two) to achieve the goal. Now, if such a plan exists

and can be guaranteed, then the entire EDR analysis was unnecessary, since the

[LMTJ framework can (formally) find such plans. However, there might exist a

2-step EDR strategy to (try to) achieve the goal from H. While such a plan ,iiiid

not be guaranteed, it might be worth a try. This suggests that the failure
action in an n-step EDR strategy should be to recursively construct another EDF?

strategy to achieve the goal from the EDR region, using no inure than the remnaining

number of steps. If n is 1. the planner shoud simply signal failure and top

EDR is ripe for probabilistic analysis. In our plalws the recovery act iI Is

4 often. "in case of failure, try it again." Probabilistic analysis would pirnut ,,tie" 1,0

address the likelihood of success for tich a plan. In particular, notice that after a

failure, it is frequently the case that ,he run-tine executive has learne -,onwtiirti

about the structure of the environment. This knowledge is Pneboied in tlie ,ihs't
of J known to contain the world state. Evel after achievin K in EDI? rg glI all'!

signalling failire, it is generally the c(a.se that tli p,,siti, iii .1 is immr,' pro,;,#,

known than at the start of the plan execlit,,n. Hene we can ,quite pretilv l,.ti mi.

our view of "Error Diagnosis" it is siimply the poItl ill II i vI ' lln't;h,'] ,,tiiirau ,, ,

-space. ani(l, in particllar, the positioiiin .1J

2[rtless. of course, the error recoverv artton is u,,t a hint nfl

66

4

One can envision different sorts of recovery actions. One type of recovery would
be to set up to do the task with different parts. Extending EDR to the kind of cyclic
activity found in certain applications would be very useful. While in principle it
Would be modeled within our framework, in practice, the dimensionality of the
Kener-alized configurtion space would be prohibitive.

% p 4

6. Implementation and Experiments: One-Step EDR
Strategies

In this section we describe experiments with a implemented EDR planner,
called LIMITED which is based on [LMT,E,D]. The discussion here focuses on how
to use the EDR theory in a planner to generate one-step EDR strategies. Later in
the thesis we discuss the implementation of multi-step EDR strategies generation.

Ni 6.1. Experiment: Computing EDR Regions

In order to synthesize EDR strategies, we must be able to compute EDR
regions. To compute EDR regions, we must have tools for computing forward-
projections and preimages in generalized configuration space. We now discuss these
tools and experiments using them.

We approximate preimages using backprojections (see [Erdmann]). At present,
the implementation can compute slice approximations to EDR regions for one-step
plans where the generalized configuration space is three-dimensional. The particular
generalized configuration space we consider is that of the gear example described
in section 1.1. (See fig. 2). In this case, C is the cartesian plane, representing
translations of gear A, and J is the 2D rotation group (i.e., a circle), representing
orientations of the gear B. The implementation uses slices: by a slice we mean
an a-slice of generalized configuration space for some a in J. a is the model error
parameter, and represents the orientation of B. We have implemented an algorithm
which computes slices of the three dimensional EDR regions for both variants of
the gear example. In the first, B cannot rotate, so no motion across J is possible.
In the second, B can rotate when pushed, so motion across J is possible. In the
latter case, backprojections and forward projections must be computed across J,

since it is possible to achieve the goal by moving across J (rotating B by pushing
- and possibly sliding on its surface).

Given a 2D slice of generalized configuration space, LIMITED employs a plane-
9; sweep algorithm for computing unions, intersections, and projections. (By projec-

tions we mean forward projections, backprojections, and weak-backprojections in
that slice). The algorithm uses exact (rational) arithmetic, and computes unions
in 0((n + c) log n) time, and projections in 0(n logn) time.1 The design and im-

0•.1 plementation of the 2D plane-sweep module is joint work with John Canny; the
algorithm is based on [Neivergelt and Preparata] (who give a union algorithm) and
related to [Erdmann] (who implemented an 0(n 2) backprojection algorithm, and

- suggested an improved 0(n log n) version).

1 Where n is the number of vertices in the slice, and c is the number of intersections.

68

ii.
"a_ m - . . _r , .¢ -C . -L d , , . - . - "- . ,, r - ' ' ' ° ,"" .. @ ' . '. '' '' . d '' a . '

) F# (R)

Fig. 31. Illustration of how forward projections are propagated across slices. In
slice a, the forward projection of R, F*(R) is computed. e is an obstacle edge
in FO(R). Configurations on e correspond to contact configurations between the
gears. Quasi-static analysis indicates that commanding velocity V; from e can
result in motion in the +a direction. As a varies in this direction, e rotates,
sweeping out an algebraic surface V. V is followed into a nearby slice, a', and
the intersection of V and this slice is e'. In slice a', the forward projection F,(e')
is computed. This is the propagated forward projection.

To compute projections in the 3D generalized configuration space, LIMITED
propagates projections across slices. For example, given a forward projection in a
slice, the algorithm finds all obstacle edges and vertices from which it is possible
to exert a positive torque on the obstacle (which is gear B in the figures). See
fig. 40. Thus by pushing on these edges it is possible to move across slices in the

+a direction. Each such edge is a slice of an algebraic ruled surface in generalized
configuration space. The vertices are slices of algebraic (partial) helicoids. Sliding

along the surface of B while causing B to rotate corresponds to following the surface

(or helicoid). The surface is traced into the next a-slice, and taken as a start

89

region from which to forward-project in that slice. For example, see figs. 41-42.
The propagated forward projection must then be unioned with propagated forward

projections from other slices, and with the forward projection of any start regions

in that slice. See fig. 45. Weak 1'ockprojections are computed analogously.

In order to compute weak backprojections and forward projections, we assume
that there can be stiction at the rotation center of B. Thus the ratio of sliding

to turning is indeterminate. In general, the computation of strong backprojections

under rotation due to pushing will be a second order problem, since it depends on

the derivatives of this ratio. We employ a conservative approximation to the strong
backprojection (namely, the backprojection in free space alone) to construct the

EDR regions. This suffices, since EDR strategies require only the weak backpro-
jection and forward projection (which depend only on the possibility, and not the

velocity, of sliding and turning). Thus there is a deep sense in which EDR strate-
gies with model error seem easier to compute than guaranteed strategies, because

EDR strategies are "first order." This is consistent with the intuition that weak
backprojections should be easier to compute than strong backprojections.

Figs. 32-39 show the EDR regions for the gear example (sec. 1.1) when no

,- rotation of B is permitted. Only one slice of g is shown. In all the figures. the com-

manded velocity is "towards the center of B", up and to the right. The magnitude
of the control error can be seen from the "fan-out" in the forward projection (fig.
35).

Next, we allow B to rotate. Figs. 43-48 show the EDR regions at four a-slices
of the 3D generalized configuration space. In this case motion across J is possible
by pushing B, when B rotates. The projections have been propagated across slices
and unioned. The results are slices of the 3D EDR regions across J.

6.2. Experiment: Planning One-Step EDR

The computation of the EDR regions is at the heart of EDR planning. To

generate one step EDR strategies LIMITED performs a search by discretizing the
* space of possible commanded velocities. The discretization generates a set of ,ori-

manded velocities to try. The following loop is executed to search for an EDR
strategy. Below, we use the phrase "the itrateqy recognizably tcrininates in G or

H" to mean that the run-time executor can always distinguish which of G or H has
been achieved, when the motion terminates.

Algorithm IEDR

1. Generate a commanded velocity i,.

2. Compute the EDR region H for ?,v.

ITO

70

S1
*4S ;:.", , - ".-'- "-.- . ',""''. .- ' .'--'. ';---. - -: - ; " -'5.' . -. 1 -.. ''-

3. Determine whether the EDR region H and the goal G are distingutishable uwing
sensors. If so, then v; yields a one-step EDR strategy which recognizably terminates
i n G or H by monitoring position and force sensors.

4. Let OG and OH denote the set of obstacle edges within C and H, resp. Deter-
mine whether the regions OH andOG are dis tinguish able using sensors. If so, then
v; yields a one-step EDR strategy which recognizably terminates on an obstacle edge
in G or H. The termination condition is9 contact with2 or sticking on a surface in

G orH.

5. Let pushg(G) and push9 (H) denote the sticking push-forwards. They are the

set of obstacle edges within G and H, res p., on which sticking can occur under
v;. Determine whether these regions are distinguihable using sensors. If so, then
v; yields a one-step EDR strategy which recognizably terminates when sticking is
detected.

Here is how LIMITED decides the question, "Are C and H distinguishable using

sensors.?

H and G are distinguishable using position sensing alone if their convolutions

* (Nlinkowski sums) by the position sensing error ball B, do not intersect.

Each obstacle edge of H and C has an associated configuration space frictioni

cone. Two edges are distinguishable using force sensing if the convolutions of their

friction cones by the force sensing uncertainty B,,,, have a trivial intersection.3

Similarly, the set of possible sensed reaction forces at an obstacle vertex it of
* G or H may be found by taking the (direct sumn of thle frictin conet. of te edf

*.cobounding w, and convolving by B,, Again, a vertex of H and a vertex(o

edge) of G are distinguishable using force sensing if their associa~ted cones of sensed

reaction fo-ces have a trivial intersectionl.

LIMITED decides that G and H are distinguishable using position sensing and

* -force sensing if all edges and vertices of G and H are pairwise dlist inguishable using

the position arid force sensing criteria above. The p~roceduire works equally well

for det ermiinig the dist inguishiab ili ty of 06 awl OH, and on tile pi isli forward!,

plish@t

o Note that tile procedlure is co~rrect fo r Iitiear edges. where p' siti(mi an'id force
VeILS111g are sep~arab~le because tile set 4 '')f 1d react i'nII forcv-, I!, ('C uiist alit a Nla 'i i 'i

"div Ili genieral. the s;ets which iiust he distiiict areof the fdoIngfrixi Levt V\

ethle moVi .lit ioll of thet fric(tl(i col[Ie at T withI the veh~lx'it\ V w.esili tIlicf'Ftaillt%

L3,,, Let B, (r j denote thet)s~itli)ll vw'~'iiig uii, rtaiit%\ hall trt~uislateil t(, r 1lii

Ih'w f-%-r, wo- #,(titm 7 fr a to-ihi a l - t.i n r#-# i IVII/Ifr %k twi i r th.w 1111., 1 i. in

(, I

't
" 1(C) = N(x) x Bp(x).

z EG
For general goals and EDR regions, we must have that I(G) and I(H) are distinct.

a. . A final comment is required with regard to sticking as a termination condition.
EDR plans generated with this termination predicate only make sense if sticking is
possible in the goal. That is, if sticking is impossible in the goal, then all motions
will terminate in H. It is better still if sticking is in fact necessary in the goal. If this
is the case, then all motions entering the goal will terminate in the goal, whereas
all motions entering H will terminate there. For example, recall the peg-in-hole

, strategy in figs. 3-13, chapter I. In this example, sticking is necessary in the goal

under both the first and the second motions. For a motion 0, the formal criterion
that necessary sticking satisfies is

F*(G) = G.

That is. if we view 0 as a "mapping" then G is a fixed point. Of course, it is a
simple matter to verify this criterion given our plane-sweep algorithms for forward
projection. Note also that there are other termination conditions that satisfy the
fixed-point equation--one example is the "stationary subgoals" in the tray-tilting
planner of [Erdmann and Mason].

Further details of the one-step planning algorithms in LIMITED can be found
m section 7 At this point, however, we digress to discuss the complexity of EDR

a, planing.

6.3. Complexity Bounds

We now give some complexity bounds for subproblerns in EDR planning. All
u,)r bounds are upper bounds. The first question is, what is the complexity of EDR

Sd PiaillW 111in 'ue' sl i e"

S'iupp ,, s we are Kiven a mit)ti d lirci' tloll t,, and a planar polygonal envi-
SrI al Imnet i'mitai niti rig u dvl-s Tlie erivir niniezlt represents the configliration space

' aF , aita Ii a planar sice. The vrmifiwirati ,ii space ,)bstacle polygo ns nay be non-

I.,-,ituzvi',,t may tt interse-t The 4tart reOgl i alMd gt al are polygon of constant

I/V 'Iiipprev that the terniiation ,(,unlitloli to be emiployedI is sticking, \Vlat is

tie ',,,tniplexity ,(f v%-enf.ilig that 0 yvlhls ani EDP strattey ill this slice,
S0:

Thieoremi: T'h'rv' rr.qLq an (r)) abqiruthm fir d'cldinq thr ?alidtty if a onr--tcp

e. F)PR 4trafrqy with * titckinq terminatinc v in a planar .tie

P ['" ,f t 1i l il fll t ,itff l lo rai l k€v ,,ll tite in time- M i *. l Plie 1 wher.t ti ile ', ' ,111 1 , I dI , e t w t l i I a i i t Ni v e g l a n i , - a r t a

7204,,., e, P ,.~r ta

a, .*'.

Forward projections, backprojections, and weak backprojections can be computed

in time O(n log n). All projections have size 0(n). Determining the sticking edges
and vertices of a polygon is O(n). Hence computing the EDR region H requires
time O((n + c) log n) and the output has size O(n + c).

While the goal G has constant size, the algorithm only needs to distinguish H
from the closure of the free-space goal The free-space goal is the set difference of
G and the configuration space obstacles, CO. G - CO has size O(n).

Determining whether H and G - CO are distinguishable can require a pairwise
test of their edges and vertices. This takes time 0((n + c)n). 0

Now, in LIMITED, the input is given as a set of convex, possibly overlapping
real-space polygons. Suppose the input is given as real space polygonal obstacles
of size O(m). That is, the total number of edges is m. The configuration space
obstacles must first be computed. This can take time 0(m 2), since the input could
consist of two sets of M convex (in fact, triangular) polygons which must be pairwise

6

convolved. The output-a set of overlapping convex configuration space obstacle
polygons-has size O(m). The union of the configuration space obstacles must be
computed. This requires time O((m + c')log n) and the output has size O(c'). c',

-' the number of intersections, is between 1 and in2 . Taking n to be c', we find that

the complexity of EDR verification in a planar slice is < ((2L)2) 3 , or 0(m6), when
"- measured in the size of the real space input.

These bounds are not for an idealized form of the one-step EDR algorithm,
but rather for a full, exact-arithmetic implementation. In practice-by which we
mean for the experiments in this thesis-we found that while c', the complexity of

* the configuration space obstacles, can indeed approach n 2 , the complexity of the
EDR regions is roughly linear in n, (and therefore merely quadratic in m). This
is probably due to the structure of the projection regions. Each projection region
contains free-space edges and obstacle edges. Because the free-space edges of any
projection region are in at most two orientations, it is difficult to get n 2 crossings
of edges in free-space. This difficulty is exacerbated by the fact that the obstacle

• edges in two intersecting projection regions will be identical. Thus the only source
of quadratic intersection complexity can be free-space crossings of projection edges.

.. While superlinear intersection complexity seems unlikely for projection regions, it
remains open to prove a linear bound.

6.4. Critical Slice,: An Introduction

While upper bounds for the complexity of planning in a single slice are estab-

lished, the comiplexity of planning with many EDR slices is less well understood.
Two questions remain:

7T3

p%

" How many slices are necessary for EDR planning?

W What is the complexity of propagating the projection regions across slices?

The key to answering the first question may be addressed using critical Slices.
The idea is as follows. Consider the gear experiment, where gear A can translate
and B has unknown orientation. Initially, assume that the orientation of B is fized,
so it cannot rotate when pushed by A. Let a denote the orientation of B. Then
consider the three-dimensional backprojection of G in 9. By taking x-y slices of
the backprojection at different values of a, it is clear that generically, as a varies,
the topology of the backprojection remains unchanged. Similarly for the forward
projection or weak backprojection: The topology of two backprojection slices are
the same if no edges or vertices appear or disappear at a values between them.
At singular values of a, however, a small change in a will result in a change in
the topology of the backprojection slice. Such a change is called a "catastrophe."
These singular values are called critical a, and the generic values of a are called non-
critical. Two critical values are called adjacent if there is no critical value between
them.

* The idea is that the planning algorithm can compute a backprojection slice at
each critical value of a. In addition, between each adjacent pair of critical values,
the algorithm computes a slice at a non-critical a. This slice of the backprojection

" at that value is representative of a continuum of intermediate non-critical slices.
Between critical slices, in addition, it is clear how the surfaces of the backprojection
change. The obstacle vertices of the backprojection, for example, move along curved
edges that are algebraic helicoids. The obstacle edges are developable algebraic
surfaces. The equations of the surfaces are found in [Brooks and Lozano-P6rez].
The equations of the edges, as parameterized by orientation, are found in [D1]. No
additional vertices may be introduced except at critical values. The free-space edges
of the backprojection remain fixed across a between critical values. What we obtain
is a complete combinatorial characterization of the 3D backprojection in !. It can
be used to derive precise, combinatorial algorithms for decision problems about the
backprojection.

*- For example, suppose we wish to decide whether a start region R is contained in
.-k 1the 3D backprojection. (That is, to decide whether the goal is guaranteed reachable

from the start region). This problem has the following application. By deciding
the containment question, guaranteed strategies can be planned. This is because
backprojections approximate preimages. Thus by deriving upper bounds on the
containment problem in the backprojection, we obtain bounds for the planning of
guaranteed strategies. In turn, by obtaining bounds on the guaranteed planning
problem, we can gain insight into the complexity of EDR planning.

Suppose R has the form U x J for U a polygon in the plane. Then U muLst
be tested for containment in each critical and non-critical slice as defined above. In

74
p..

1t

addition, we must ensure that U lies inside the backprojection as the boundaries

of the backprojection move with a. Since the equations of these surfaces are alge-
braically defined, we simply test them for intersection with the boundary edges of
U.

The next question is: how many critical values of a are there? In the following
lemma, when we speak of edges of the backprojection, or convex configuration space
obstacle (CO) vertices, we mean edges of the backprojection in a slice, or a vertex
which is convex in a slice. Of course these edges and vertices sweep out surfaces
and curves (resp.) as a changes.

%

Lemma: Let C be R2, J be the circle S 1 . Suppose m is size of the input in real-
space edges so that n = 0(m 2) is the number of generalized configuration space
constraints. Let G have constant size, and Be(G) be the backprojection of G in
C x J as above. Then there are 0(n') critical values of a E J for Be(G).
Proof: We enumerate the various types of critical values:

A. First, an a value is (potentially) critical when a new edge or vertex is intro-
duced into, or disappears from, the union of the configuration space obstacles.
This can introduce a topological change in the obstacle boundary of the back-
projection. If A and B are convex, then as a varies, there are potentially m2

topological changes in the configuration space obstacles. These generate O(m 2)
critical values of a, which we call obstacle-critical. However, when A and B are
non-convex, there can be 0(m") obstacle-critical values. This bound arises as
the number of critical values for an arrangement of m 2 surfaces in dimension
d=3.

B. In addition, an a value can be critical if the determination of sliding vs. sticking
on an edge can change there. A change in sliding can result in the introduction

or deletion of a free-space constraint, and hence change the free-space boundary
of the backprojection. This occurs when an edge of the friction cone on some
edge becomes parallel to an edge of the velocity cone of control uncertainty.
Now, as a configuration space edge rotates with a, its friction cone rotates with
it. Thus as a changes, a friction cone edge can be parallel to a velocity cone
edge at most 4 times. Hence there can be at most 4n values of a at which thf
sliding determination changes. These values are called sliding-critical.

C. Next, the topology of a slice of Bo(G) can change when a convex verte: of a
rotating configuration space obstacle edge touches a free-space edge of the back-
projection. These a-values are called vertex-critical. Now, each free-space edge
of a backprojection slice is anchored at a convex configuration-space obtuicle
(CO) vertex. Vertex-criticality occurs when a free-space edge of a backprojec-
tion slice joins two CO vertices in that slice. The edge then lies in the visibility

75

0e4

graph of the generalized configuration space obstacles in that slice. Now, we

can obtain a bound of 0(m ") on the number of vertex-critical values as fol-

lows. Introduce an additional 0(m2) constraints, each anchored at a convex

CO vertex and parallel to the left or right edge of the velocity cone. These,

together with the 0(m 2) obstacle surface constraints form an arrangement of
O(m 2) surfaces in 3 dimensions, yielding a total of 0(m 6) critical values. This

bound may be improved to 0(m 4), by observing that each vertex-critical value

is generated by a pair of convex CO vertices, and that there exist 0(m 2) such

vertices.

D. Finally, an edge-critical value occurs when a configuration space edge, rotating
with a, touches a free-space backprojection vertex. Free-space backprojection

vertices are formed by the intersection of two free-space edges of the backpro-

jection. Each free-space edge of the backprojection is anchored at a convex CO
vertex. The number of edge-critical values is 0(m 6), because each is generated

by a CO edge, and two convex CO vertices (one per free-space backprojection

edge).

Finally, we observe that these bounds are additive, and that n is 0(m 2). 0

h

Comments: We conjecture that the bounds on edge-critical values (D) can be
improved to 0(m 4). One approach to proving the improved bound is to identify

each free-space vertex v of the backprojection, with the right generating CO vertex.
Follow the locus of v as a varies. It remains to show that the locus is piecewise-

smooth, and touches each CO edge at most a fixed number of times.

We can now address the complexity of deciding containment in the backpro-

jection. In this discussion we address only the combinatorial complexity, and not

the algebraic complexity, of the decision procedure. Here is what this means. We

have obtained a combinatorial upper bound on the number of critical values of o.

Once rotations are algebraically parameterized, these critical values are, in fact, all

algebraic; that is, in general, a critical value of a will be an algebraic, but not nec-

essarily rational number. However, the plane sweep algorithm (which is discussed

in more detail in chap. VI) operates on rational numbers. Hence to obtain a deci-
sion procedure one must first approximate a by a "nearby" rational number q. By

*0 "nearby", we mean that the approximation must be known to be sufficiently close
so that the decision procedure will give the correct answer for containment. As the

approximation gets closer, the rational numbers will become more "larger" (i.e., as

a quotient of two integers, the integers will become larger), and the plane sweep

algorithm will run correspondingly slower. To choose q algorithmic;illy, one might

make use of a "gap" theorem, such as in [Canny].

76

Theorem: Let U be a polygon of constant size, C be R2, j be S', Be(G) be the
backprojection of G in C x J as above. Suppose G is of constant size. Then there
ezists an algorithm deciding the containment of R = U x J in BO(G) in time

O(n4 log n).

Proof 0(n 3) slices of the backprojection can be computed in time O(n 4 log n). Now,
to test for containment of U in the 3D backprojection region between two adjacent
critical slices will take time O(n), since the backprojection has size O(n). The cost

of deciding the containment of U between successive adjacent pairs of n3 slices,
each of size n, is O(n 4). Since the time for computation of the slices dominates,
this yields total complexity O(n 4 logn). 0

Some comments are in order. First, our algorithm is naive, in that each back-
projection slice is recomputed from scratch. In fact, this extra work is unnecessary.
At a critical value of a, very few aspects of the topology of the backprojection wil
change. That is, typically, only one or two edges will be introduced or disappear

* at any critical value. We can make this notion precise as follows. If a is a generic
singularity, then exactly one edge or vertex will appear or disappear there. Hence,
for example, we can ensure that all critical values are generic singularities with
probability one by subjecting the input to small rational perturbations.

Suppose that a backprojection has been computed in a critical slice at a. Then
to compute a backprojection in a nearby non-critical slice at a + c, we merely need
to update the portion of the backprojection boundary that was critical at a. This
requires only constant work: only one edge or vertex must be changed to derive a
backprojection in the new slice! It seems reasonable to conjecture that this tech-
nique would yield an algorithm of complexity O(n3 log n) for deciding containment
in a backprojection.

Finally, it appears that there are many problems in which the number of critical
values fails to achieve the theoretically possible n' bound. This is because charac-

.e teristically, there are orientation restrictions: typically, even with model error. B is
O not allowed to rotate freely. In other cases, there are symmetries. For example. in

the gear case, even though B is allowed to rotate freely, it is unnecessary to consider
n3 slices since due to symmetry the configuration spaces 'repeat pertodically

6.4.1 Comparison with Lower Bounds

From a theoretical point of vivw. this result I", the filowHlit -,t '01

si ler tlit- one-st ep comipliant mot ion JhJrIiIII~ J)F hlenIJiii 3D a u i i' k ii,,wi

Iv, lie- ,ral ,bstacles This pr,,lern may },,e adfir,'-e, via 3D }a, k ~r,,Wi.t'tt,s i

('R: have sho()wn' that deciding cunZttaleli,11t II ,Il'h a 3D Isatkp t,, . NP hiard

5 -

S

0r%4 eA
S... *.*.*. - '.$S..*.*' .. S...

In particular, such backprojections can have an exponential number of faces. How-
ever, in the previous theorem we demonstrated a special class of 3D backprojections
that have only 0(n 4) faces, along with an efficient algorithm for deciding contain-
ment. This special class of backprojections arises in the presence of model error.
Specifically, they arise when C is R2, J is one-dimensional, and no motion is per-

" mitted across J. In this case, the non-holonomic constraints that keep the robot
within one slice essentially disallow the kind of fanning out and branching that
LCR] discovered in 3. Thus, our polynomial-time algorithm identifies a tractable
subclass of the 3D motion planning problem with uncertainty. This subclass is also
interesting in that it arises naturally in planning with model uncertainty.

6.4.2 Issues in the Critical Slice Method

The critical slice method represents a theoretical algorithm. It has not been
implemented in LIMITED. It was described here to give some characterization for
bounds on planning with model error. In particular, it gives a precise, combina-

* torial description for the 3D backprojection in 2 x S 1 , and an exact algorithm
for deciding containment. The containment algorithm directly addresses the ques-
tion of planning guaranteed strategies, since a backchaining preimage planner can
be constructed by approximating preirnages using backprojections. The termina-
tion condition for such a planner is when the start region is contained within a
1},ackprojection.

Most important, the critical slice method attempts to put the slice techniques
1xe1ed in LIMITED on a firm mathematical footing.4 It provides a principled way-a

specific method-for choosing which slices to consider, a bound on how many slices
are required. and a cor-.ervative algorithm for deciding containment.

Much work remains however:
. We have only addressed deciding the containment problem in a precise com-

-'.. binatorial fashion. Generalize to computing set-differences and to deciding
thir distinguishability-that is. deciding G vs. H distinguishability-using

[•h, critical slice approach.
- -" J is one dimensional in our discussion. Generalize the critical slice method to

1- -(ti , lieflnsi iial model error.

" "' . F !h arialysis adlr-s:;s the complexity of verifying an EDR strategy, but does

nIt -peak to the complexity of the search. What is the complexity of finding

_, ,ratgy ,t tr1et,erniinlim that none exists? This issue will be attacked in a
;A 1'r I#(,i , lm,,ping a comInbinatorial description of the non-directional

%"

. ' t it . [',. ha, h, e'.'I 'tijiied in other dlomtains. See, for example, [Lozano-

4P -1 78

*"

...%~

0 Derive bounds on deciding containment after relaxing the no-pushing restric- I
tion and allowing motion across J.
Let us say a few words about the last point. Suppose now that B can rotate

passively when pushed. Hence motion across J is possible, and projection regions
must be propagated across slices. For example, a forward projection can begin in
free-space in one slice, contact an obstacle edge generated by B, rotate across J
into another slice, and fly off the edge into free-space in that slice. Hence forward
projections must be propagated across slices. This process was described above

' in sec. 6.1. The obvious question is: What is the complexity of propagating the
projection regions across slices? The complexity of one step of the propagation is
not difficult to derive. For example, consider the forward projection. There are
O(n) obstacle edges in the forward projection in a planar slice. For each edge,
a constant time quasi-static analysis is performed to determine whether pushing
against that edge can cause rotation of B, that is, motion across J. See fig. 38.
If so the forward projection must be propagated along that algebraic surface into
an adjacent slice. This can result in a propagated start region of size O(n) in the
adjacent slice. This start region is used to compute a new forward projection in that
planar slice. See figs. 39 and 40. This propagated forward projection must then
be unioned with any other forward projections within that slice. See fig. 43, which
is a detail of fig. 42. When does the propagation process terminate? A correct
termination condition is: Terminate propagation when any propagated start region
lies within an existing forward projection.

Now while the complexity of each of these steps is known, it is not clear how
'ong it takes for the propagation process to terminate. In particular, results of [CR]
stiggest that 3D forward projections may even have exponential size.5 Experimental
,'idence-the backprojector of [Erdmann]--concurs. Furthermore, w1An propaga-
lin is permitted, more slices may be required. For example, it is conceivable that a

parh within the forward projection may break contact and fly off into a slice which
v i,.twt'en the chosen critical values. In other words, propagation may increase the
:.a:iiiwr of critical values. The additional critical values can occur as follows. The
.::. -weep algorithm is only correct when the velocity cone is smaller than the

, i 'r,,,- on any edge (see chapter VI). Hence we will assume it is convex. Then
;il ,± b, broken when the inner product of an extremal vector in the velocity
:,,it rward-facing; edge normal is positive. Hence the zero-crossings of this

Ptr, p,,tetiallv critical values; there are O(n) such values. While this
-. ,iplxity of cornpiting projections when pushing can cause motion

i ,'wr hound for the size of the forward projection in R3?

It r,'matisn to d(etermine the applicability of their proof in

79

.-..... ,-....,.. . , ..-

This completes the informal discussion of the one-step ED R planner II I 1 1

Later in the thesis we will discuss the dIetails of the plane-sweep algonthrn anid Iw
LIMITED implements the EDR theory to compute multi-step strategies. 111 01"

next section, we will discuss a number of theoretical and practical Msues relating to
the construction and impementation of the one-step EDR planning algorims iii

LIMITED.

08

%.

S
°

.

."

.d".

80
SI.

0.

41

Ilk,

%I

VFK 32 The cofiguraionl space for the gear example (fig 2) at one a-slice

, =0 of ; The goalJ region is the "vlleys" of the cspace obstacle- The start
tegion is the diamnd to the lower left. For figs- 32 39, B as not allowed to

ro)tate, st) no motionl across J is possible

81

ap '0***% .

'S
b

J~v

a

V

'p

'p

C.

I
p 1

I

Fig. 33. The strong backprojection in slice a = 0 of the goals in fig. 32, aa.uming
that B cannot rotate. In all these experiments, the coefficient of friction is taken

I to be .25.
C.
4
I'

82

6 4

-. 5 \~. *%* ~ p - V VV V ~ V V * V V ' VV V V V V

J,

P00

-e Op, A
% %

-P.-, JM&Zj

Fig. 35. The forward projection of the start region in slice a =0.

84

%-S

Fi,3.**frar rJino h satrgo nslc a 0 N t h
deeert ede u'osiig

4~kf

a--

if.

.1~

-I.
5~~

if

I

b

I
Ia

* U

'-S. AA g
.5.,

* 1 dI

a.
'a
h

S

I
6

1 3

I'
Fz~. 38 Tb. H0 region (the forward projection minus the weak backprojection).

A

S

5.

5?

- - - ~ -~ .- ,..., 5 .*v. 5 5*..',
5 ~

* .~.

I.. -

)

I

".5

A
U

1%* 0h
a

55~ U

'5 1
I.

0 1~1
~5

Fig. 37. The weak minus the strong ba.ckprojection.
9.

9.

0

5%

86

0

- ~. S... ~ . 4. - ~ ~ ~ ~ S

9. a

p2,

a-

.1*

"4 C
0

[I.

'pr

li1

b- -7

S._

LL
5-'

Fig. 40 Now assume that B can rotate when pushed (for figs. 40-48). Here we

show the region within the forward projection (fig. 35) from which it it possible

to exert positive torque on B. This region is called the differential forward
proWectson acros J in the +a direction.

89

1*

J

* - I
I
I~.

'p
p~.

I

1!~

'.4.' -~

*

4

p I.

fli
I I.

Fig. 41. The differential forward projection is propagated to the next alice in
the +c~ direction. Here we take its forward projection in the next slice.

PIE

I, I
90

.44 I

91

r .. %

'ak

''1

S

-,--3

p ,5

- 43 In the next figures, B ts permitted to rotate when pushed. The pro-

tection rerions are computed across J by the propagation and union algorithm.

O , Iho* four slices of generalized configu.ation space. at a = 0*,6°,12*, and

S' The proctions take into account possible rotation of B under pushing.

Here the weak backprojections across slices are shown. The "spikes" represent

-"ch 's from which jamming of the gears must occur.
'- .

S.

-5.

Oi

WITH UNCERTAINTY(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB B R DONALD

UNCLASSIFIED JUL 87 RI-TR-982 NB884-85-K-012 F/G 12/9 U

'IIII2 1..6*2

VI B Rf 1! E 2 FT HR

6 6

.

Fig. 44. The forward projections of the start region, propagated and unioned
across slices.

93

I 2

be r

X.

* 0

II
I

i" Fig. 45. Detail of the forward projection for a = 12°. Note the effect of propaga-
i tion in the clockwise-most region of the forward projection. This region can only

4q be reached when rotated to from neighboring slice. The shaded region shows the
portion of the forward projection which has been propagated by pushing from :

slice a = 180.

94q

49

S S

p..

U

a
d -

* I.

* C

* S
S

S S

I I
*0~~~

S
'p 1.a.

a a.

A

bO
A

~i
0

Fig. 46. The weak minus strong backprojections, propagated and unioned across
slices.

Se,

95

04

-A a A . ., . .,.-
A 5

,,J t ...

* 4,

.... , ,.,aI.-.

.1

•I

l " Ii :

Fig.47.TheH0 egio (frwad pojetionmins wak ackpojetio) aros

slices

96a

.- . m' r "+" +'.+ , ; '+ " . . . + +

.0.6

al

.a.
S°-

Him

Fig. 48. The H. region (sticking regions within the weak but not strong back-
projection) across slices.

[09
°'V' ' 1'~ i"-", 2 ;,:."" . . . ", . -", . . ,"-"-"• .•-'- ". " - ' ' - .- ,- '.--- "''"""""".'

7. Implementing One-Step EDR Planning in LIMITED

In this section, we discuss a number of theoretical and practical issues relating
to the construction and implementation of the one-step EDR planning algorithms

in LIMITED. This discussion is the sequel to the informal description of one-step
EDR planning in section 6. While these issues arise in implementing an EDR
planner, they illustrate several interesting theoretical and practical points. They

also introduce a series of more advanced concepts that are required to make the
"- i theory rigorous.

7.1. The Search for a Strategy

Some comments are in order about the search for a commanded motion in

LIMITED. First of all, the commanded motion generator is obviously trivial. The
initial commanded motion LIMITED tries is obtained by subtracting the centroids
of the start and goal regions. LIMITED then searches outwards on either side of this

4l direction. Obviously, such a search strategy is not complete. Later, we will discuss
precise, combinatorial algorithms for a complete search strategy using critical slices
of the non-directional backprojection.

Second, since the search is relatively blind, it may take a while to converge. A
better technique for generating commanded motions to try might involve using a
path-planner with no uncertainty to suggest an initial path. However, the focus of
this research is not on optimizing the search algorithm in the planner, but rather
on testing the geometric characterization of EDR.

It is often possible to generate planning strategies that satisfy the EDR axioms
trivially by always failing. For example, consider a strategy that moves directly away
from the goal. While such a motion may be useful in multi-step EDR strategies
(see below), we wish to disallow them for one-step EDR. This is done as follows:
on one-step planning LIMITED discards all strategies whose forward projection does

not intersect the goal. This heuristic ensures that the strategy has at least some
chance of succeeding.

A better approach might be to consider the size of the intersection of the goal

and the forward projection. Such a technique might be used to generate probabilisti-
cally optimal strategies. In particular, it would give a criterion for choosing between

*i two EDR strategies. For example, it might be possible to place some probability
distribution over the forward projection. Then the intersection could be integrated
with respect to this distribution to determine the probability of reaching the goal.

In addition, different sized velocity cones could be employed to generate forward

projections of varying likelihood. To be more than a mathematical abstraction, such
a technique requires a better understanding of the probabilistic characteristics of

98

i- .. N~

generalized damper control than are currently available; it is a promising direction
for future research.

7.2. Termination using Contact and the Role of Time

In polyhedral environments with a bounding box, sticking termination is suf-
ficient to ensure that all pure translations eventually terminate [Buckley]. Let us
assume the sufficiency of sticking termination for the discussion below.

Recall step (4) of algorithm 1EDR in sec. 6.2:

4. Let aG and OH denote the set of obstacle edges within G and H, resp. De-
termine whether the regions OH and OG are distinguishable using sensors. If
so, then v; yields one-step EDR strategy which recognizably terminates on an
obstacle edge in G or H. The termination condition is contact with or sticking
on a surface in G or H.

If the termination condition can be "contact" as computed in step 4 then unless
G U H can be recognized using position and force sensing alone, a termination
predicate with time-out must be employed. This is because it is insufficient to
terminate on first contact; we must first know that the contact lies within G U H.
Ensuring that this will be the case requires indexing the forward projection by time.
(See [Erdmann] for a discussion of time-indexed forward projections). However if
the contact regions of G and H are distinguishable, then so are the possible sticking
regions, since these are contained in the contact regions. So if OG and OH are

distinguishable using sensors, then so are push0(G) and pushe(H). Hence v; yields
a one-step EDR strategy which recognizably terminates by sticking in pusho(G) or
pusho(H).

beThus if the distinguishability condition in step (4) is met, then the motion can
be terminated either based on contact, once enough time has elapsed to ensure that
G U H has been entered, or using sticking, if the run-time executor does not have a
clock. In fact, this is something of a relief, because time-indexed forward-projections
appear hard to compute.

If sticking is not sufficient to terminate all motions, then termination predicates
with time-out can be employed to ensure that all motions terminate somewhere.
This is discussed further in sec. 8.3.

,. .1. 7.3. Employing History in EDR Planning

The forward projection was introduced by [Erdmann] to formalize the role of
history in [LMT] guaranteed plans. He formalized the notion that by knowing where

%€"99

4[%:

04 -"1" " " % " " " -","' '% " , "% " % "'",,• % %

a motion began, a planner can obtain constraint on where the motion can terminate.
This constraint can be very useful both in planning guaranteed and EDR strategies.
We now describe two techniques where LIMITED uses history to constrain planning
and aid distinguishability.

Throughout the rest of section 7, the goal G, the EDR region H = H0 U H8,
and the forward projection Fe(R) are all taken to lie in phase space. That is, they
are position and velocity sets.

7.3.3 The Role of History in Constructing H,

In general, LIMITED approximates preimages using backprojections. There
are a few interesting points about computing this approximation. Recall that H,
denotes sticking regions within the weak minus strong preimage. To see that H,
is contained within FO(R), we must use the fact that preimages in fact depend on
the start region R (see [LMT]), and that weak and strong preimages are contained
within Fe(R) [Erdmann]. We postpone further discussion of this point until sec.

* 8.1.

Now let K, denote sticking regions within the weak minus strong backprojection.
Now we ask: can H, intersect the strong backprojection of G, BO(G)? The answer is
no. If x is in H, then sticking is possible there. Hence x cannot be in Be(G), since
motions from x can stick there instead of reaching G. Thus, in particular, H does
not intersect the set difference formed by the strong backprojection minus the strong
preimage. Thus H, C K, since backprojections are "upper bounds" on preimages. 6

Thus K, is a conservative approximation to H.. (By conservative, we mean that
while the approximation may be larger than Ho, an algorithm approximating H,
by K. will generate correct plans). However, we also have the inclusion

H, c Fe(R) n K,,
where R denotes the start region. This inclusion derives from the fact that, given
that the motion must start in R, a strong preimage of G is contained within the
intersection of the forward projection Fe(R) and the strong backprojection Be(G).
A similar containment holds for the weak preimage with respect to the forward
projection and the weak backprojection We(G). Hence, to construct an upper

bound on H, we are simply required to compute all sticking regions within

Fo(R) n (We(G) - Be(G)).

The advantage of using this tighter approximation is that H, must be distin-
guishable from G in order for 9 to yield an EDR strategy. Tighter approxima-

6 By "upper bound" we mean that the backprojection (under 0) contains the preimage
(under 0), for any goal.

100

-N

.a,, 1

tions heuristically result in a greater likelihood of distinguishability. Furthermore,
the approximation is fully algorithmic, since projections and set differences can be
computed by the exact plane-sweep algorithm described in sec. 6 .

The dependence of the preimage on R was noted first in [LMT] and later
developed by [Erdmann], who also determined the inclusion of the preimage within
the intersection of the forward and backprojections. This dependence is discussed
in some detail in chapter III.

7.3.4 The Role of History in Distinguishing H from G

There is another case where intersection with the forward projection yields an

advantage in distinguishability. In the development of EDR theory, we found that in
an EDR strategy, it was necessary that H and G be distinguishable. This condition
is supplanted by a tighter one in LIMITED, requiring only that H and

Fe(R) n G

be distinguishable. The justification is that it is unnecessary to be able to distinguish

S. between arbitrary points of G and H. Instead, it suffices merely to distinguish
between the reachable points. Again, this technique shrinks the size of the goal
regions that must be distinguishable from H, which heuristically makes it easier
for a strategy to meet the EDR criteria. Note that H does not need to be shrunk
further, because it already lies within the forward projection.

7.4. A Priori Push-Forwards Based on Sticking

The push-forward operator push0(.) is a restricted implementation of the gen-
eral push-forward described in sections 4 and 10. It is called the a priori push-
forward based on sticking. The difference is as follows. The theoretical general
push-forward "decides" where the motion should terminate so that the motion
strategy will terminate recognizably, the a priori push-forward computes where
the motion will terminate given that a priori the termination condition is sticking.

7.5. Sticking as a Robust Subtheory of EDR

In the abstract EDR theory, one envisions the run-time termination predicate
performing whatever computations are necessary to terminate a motion recogniz-

, ably in G or H. That is, in principle, the planner decides what termination con-
ditions are appropriate for a successful EDR strategy, and encodes them into the
motion strategy. Of course, it is also the responsibility of the planner to verify
that this encoding will always result in a distinguishable termination. In short, the

:101

74N W '.

-V abstract EDR theory can employ the full power of the [LMT] preimage framework
to generate motion strategies.

However, LIMITED employs only certain restricted termination conditions, as
we saw above. In particular, sticking is used in most experiments. This restricts the
class of strategies LIMITED can generate. The restriction requires some justification,

and that is the purpose of this section.

First, recall that in polyhedral environments with a bounding box, sticking
termination is sufficient to ensure that all pure translations eventually terminate
[Buckley]. In general, in this thesis we have made the heuristic assumption that
motions can eventually be terminated via sticking. Failing this, we also entertain
the weaker assumption that if sticking is insufficient, then time can be employed to
wait until G U H has been achieved before termination; see sec. 8.3.

To analyze the structure of sticking termination, let us introduce the following

notation. If the robot recognizably achieves G U H, this means that the run-time

executor can determine that G or H has been achieved, but cannot necessarily tell
which of G or H has been entered. If the robot recognizably achieves { G, H }, then
it can further distinguish which of G or H it has reached. G U H is called the union
while the set notation is called the distinguishable union.

Throughout this section we assume without loss of generality that the goal G
is contained within the forward projection (see sec. 7.3 for justification). If this is

not the case, then intersect them to obtain a new goal.

LIMITED tries to decompose this problem-of ensuring that all trajectories
terminate recognizably in { G, H }-into two subproblems. The first is to ensure
that the motion in fact terminates in G U H. That is, the problem is to determine
that at least one of G or H has been achieved, although the robot may not know
which. The second problem is to distinguish between G and H, once G U H has

been achieved.

Note that the first problem requires distinguishing between G U H and its
complement. Here is the key point:

S* The construction of H guarantees tautologously that with sticking termination,
-* GUH will be recognizably achieved when the motion terminates. That is, with

sticking termination, no motion can terminate outside of G U H.

This resolves the first subproblem. Thus

. With sticking termination, all candidate one-step EDR strategies eventually
461 terminate recognizably in G U H (but not necessarily in { G, H }). Of these, all

valid EDR strategies can distinguish between G and H after termination, and
hence recognizably terminate in { G, H }
The second subproblem is how to distinguish between G and H once G U H

has been achieved. In developing the [LMT] framework for planning guaranteed
strategies, [Erdmann] developed an elegant formalization of the question, "Using

102

Z!y,:.:..--- .:-':.-. :-",-:.:,-''r.... . ..:,..:- N :,:' . .: . . ;' '",: ::-; " '' '.

sensors and history, when can the termination predicate decide that a motion has
recognizably entered a goal G3?" The answer was as follows. Let R be the start
region. The forward projection, Fq(R) captures the notion of history: it is all
positions and velocities that can be reached given that the motion started in R. At
a particular instant t in time, let B~p(t) and B,(t) be the sets of possible positions
and velocities. These are the sensing uncertainty balls about a sensed position and
velocity in phase space at time t. Thus sensing provides the information that the
actual position and velocity must lie within the set Bep(t) x Be,,(t). The forward
projection further constrains the actual position and velocity to lie within Fe(R).

*. Thus the termination predicate can terminate the motion as having recognizably
reached G when

F,(R) n (Bp(t) x Be,(t)) C G. (*)

Now, when is it the case that the termination predicate can distinguish which
of G or H has been reached? Exactly when (*) is true for G# in { G, H 1. However,
in our case, sticking termination guarantees that the actual position and velocity

* lie within G U H. Furthermore, G U H is a subset of the forward projection, and

G and H are disjoint by construction. The forward projection provided no further
constraint in distinguishing between G and H. Thus history plays no role in the
run-time distinguishing actions of the robot executive; history has been pre-encoded
into the structure of H. Hence, we can predict that the run-time executor can
distinguish which of G or H has been achieved when the planner can predict that G
and H are distinguishable using sensors alone. A procedure-albeit not completely
general-for deciding this question was described in sec. 6.2.

7.5.5 Generalizations

There are several possible generalizations of these termination techniques. First,
it may be possible for the run-time executor to use time to ensure that the motion
terminates in G U H. That is, forward projections may, in principle, be indexed by

" time. Hence in (*), Fo(R) is replaced by Fo(R, t), which is typically much smaller.
F,9 (R, t) denotes the set of positions and velocities that are possibly achievable at
elapsed time t, under motion 0, given that the motion started in R. The termination
predicate in this case monitors a clock, in addition to position and velocity sensors.
However, in this case, history (by which we mean F0 (R, t)) could be employed
to distinguish G from H, even though the motion had terminated recognizably in

GU H. The reason for this is that the time-indexed forward projection has not been
pre-encoded into the structure of H. That is, H was constructed using the timeless J
forward projection, which the union of all time-indexed forward projections. Hence,
we can summarize these observations as follows:

103

" " " "" . . " - " .°." ","",,.

* If a termination predicate without time uses sticking to terminate the motion,
then distinguishing G from H is a history-free decision. However, for a termi-
nation predicate with a sense of time, the decision is not history-free.

Thus sticking subtheory does not preclude more general termination techniques
based on position, force, and time sensing. However, two computational issues be-
come more difficult. First, sticking termination is a robust method for ensuring
termination in G U H. With time termination, or more general position/force ter-
mination criteria, it is more difficult to ensure termination in G U H-although
admittedly these criteria are more powerful. Second, after sticking termination, de-
ciding between G and H is history-free. With more general termination predicates,
history can provide extra constraint in distinguishing between G and H.

Finally, note that [Buckley] recognized the value of sticking termination when
implementing an [LMT] planner for guaranteed strategies in R'. His planner used
sticking termination. In particular, he provided certain criteria for guaranteeing
that a strategy eventually terminates in sticking. Buckley's criteria amount to
ensuring that the environment is finite polyhedral, within a bounding polyhedral
box.

7.5.6 Forward vs. Backward Chaining

One obvious disadvantage of sticking termination is that it is not complete. For
example. a planner employing sticking termination exclusively will not be able to
find strategies that require "stopping in mid-air", even when such strategies would
be feasible given the position sensing accuracy of the robot. Sticking termination
requires all strategies to "run aground", that is, to be in contact (and in fact,
sticking) at termination time.

, With more general position/force/time termination criteria, the requirement
N, that motions must terminate in contact is relaxed. However, a forward-chaining

planner (such as LIMITED) is still left with the problem of deciding where a motion
should terminate in a multi-step strategy. That is, the decision problem involves

.1 existential quantification not only over the commanded directions, but also over
all subsets of the forward projection corresponding to possible push-forwards. Put

:s. simply, a forward-chaining planner must not only guess the direction to command a

motion, but must also guess where it terminates, before chaining ahead to the next
motion. While the space of commanded motions may be realistically quantized and
searched, the space of push-forwards may not be searched in this manner.

While LIMITED is a forward-chaining planner, the problem of existential quan-
tification over the push-forward is finessed by restricting LIMITED to a few very
simple termination conditions (there are only three; see sec. 6.2), one of wlich is
sticking. Given these termination types, it is possible to generate the corresponding

104

0

I'd

-. -. %

a priori push-forwards, and test them to see whether they yield an EDR strategy.
For example, the push-forward for contact termination is simply the obstacle edges
in the forward projection. The push-forward for sticking termination is the a priori
push-forward based or, sticking, which was discussed above.

More generally, it may be possible to define a parameterized family of termina-
tion predicates, each with an associated a priori push-forward. Each push-forward
could then be tested for distinguishability. For example, consider the class of ter-

mination conditions

{ "Terminate after t seconds." I t > 0 }

An associated family of push-forwards might be the time-indexed forward projec-
tions

{Fe(R, t) I t > 0}.

However, the existential quantification over the push-forward in the decision
problem for EDR planning is, in fact, an artifact of forward-chaining. We can see
this by comparing and cortrasting backchaining vs. forward-chaining in preim-
age planners for guaranteed strategies. In a backward-chaining planner, this extra
computation is eliminated. The difference is as follows. Consider how a guaranteed-
strategy preimage planner would construct a motion strategy 0 1,. . . , On to achieve
a goal G. 01 is the first motion in the plan, On is the last. Consider the difference in

how a forward-chaining planner and a backchaining planner would compute steps
Oi and 0,+i:

0 A forward-chaining planner must calculate where motion Oi will terminate,
since this termination region is the start region for the next motion, 0i+1.

Since this calculation involves some choice, it amounts to a formulation of
the decision problem with existential quantification over the push-forward of
motion 8i. In a back-chaining planner, where the.motion 0i must terminate has

. already been computed: it is the next preimage with respect to 0i+,, namely
• P,+(P9 ,+,('.. (Pa.(G)).. ")).

Thus we have seen why a back-chaining planner can (in principle) be complete

for guaranteed strategies, while a forward-chaining planner cannot, unless it guesses
push-forwards.

This suggests the following approach to EDR planning:

• Use a back-chaining planner to find a guaranteed strategy for part of the start

region. Then extend it to an EDR strategy using forward-chaining verification.

This appears to be a reasonable heuristic approach. However, for EDR plan-

ning, it is still merely a halfway measure. While it removes from the EDR planner's
responsibility the decision of where to terminate a motion within a subgoal, the

105

Oi

problem remains of deciding where within the EDR region H a motion should ter-
minate. This is one of the key theoretical questions in EDR; it is addressed at
some length later. The computational solution seems to involve quantifying over

push-forwards even when a combination backward- and forward-chaining planner
is envisioned. LIMITED uses only forward-chaining for this reason. However, the
combination back- and forward-chaining approach deserves more exploration. In

particular, the backchaining first stage could be used to suggest and guide the
search for good candidate EDR strategies. Randy Brost has reported7 a backchain-
ing planning algorithm which can generate multi-step plans in which each motion
is a one-step EDR strategy.

'

,!Y

i.?

7 (Personal Communication]. See also Brost's forthcoming Ph.D. thesis.

106

Oi

8. The Preimage Structure of EDR Regions

Our characterization of the EDR regions-and of EDR strategies in general-
has been somewhat informal up to now. This is because we have not employed the
full power of the preimage framework [LMT] in developing the model. In particular,
we have not yet tied together the role of history and the definition of the EDR

region H. This section remedies this deficiency. Recall our characterization of H
a-s Ho U H,. Our definition of phase-space, and of the sticking region H, must be
be made more precise. That is the second goal of this section: to link the preimage
concepts for representing strategies, with the phase-space concepts for representing
error detection in generalized configuration space.

First, we briefly introduce some preimage notation. A formal review of [LMT,E]

preimages can be found in an appendix. A key notion deals with recognizable termi-
nation in a collection of goals. We can illustrate this notion using a familiar example:
for a goal G and an EDR region H, { G, H } is a natural collection of goals to con-
sider. We know that an EDR strategy recognizably terminates in some member
of the collection. Below, we give a formal notation for this concept. However, the

question of distinguishable collections of goals also arises in planning guaranteed
strategies, as we shall see.

8.1. On the Recognizability of EDR regions

In section 7, we elaborated on the role of history, time, position-sensing, and
force-sensing in motion termination and in distinguishing G from H. The role of

history must be formalized further using the preimage framework. To this end, we
now formalize the distinguishability requirements for G and H using preimages.

In section 2.1 it was observed that if the termination predicate can distinguish
between the goal G and the EDR region H, then H is a good EDR region and an

EDR strategy was in hand. Formally, we write this recognizability constraint as 8

P8,R({ G,H }) = R. (3)

We say that the preimage (3) is taken with respect to R. (3) means that the
(strong) preimage of the set of goals { G, H }, with respect to commanded velocity

. v;, is all of R. When we have a set of goals, the termination predicate must return
.which goal (G or H) has been achieved. This is different from Pe,R(G U H), which

means the termination predicate will halt saying "we've terminated in G or H, but I
don't know which." The region R appears on both sides of (3) because the preimage
depends on knowing where the motion started. This is a subtle point, see [LMT,E].

8"We view Pe,R as a map. In the informal development we denoted the image of this
preimage map by P.

107

*4

Thus solving preimage equations like (3) for R is like finding the fixed point of a
recursive equation. Here, however, we know R, H, and G, so (3) is a constraint
which must be true, rather than an equation to solve. Presumably (3) is easier to
check than to solve for R; see [LMT,E].

With this understood, we can now characterize P and R' precisely (see fig. 26).
This requires specifying the start regions.

R' PO,R,(G) (4)

P =P,F(R)(G). (5)

P is analogously defined by adding "hats" to the P's in (5).

8.1.1 The Most General Preimage Equation

We now introduce the most general form of the preimage equation. Suppose

{ G,3 } denotes a collection of goals, and { Ra } is a collection of start regions. Recall
, denotes the direction of the commanded motion. Most generally, the preimage
equation is

P8,(R.oQ G# f =R

This says that if the run-time executor knows that the robot is in some particular but
arbitrary start region R in the collection { R,, }, then if velocity v; is commanded,
then the termination predicate is guaranteed to achieve some goal G in { G# }, and,
furthermore, it can recognize which goal has been achieved.

In chapter III, a detailed example using preimages is worked out. There, we
solve a particular motion planning problem-grasp centering- with model error
by solving the preimage equations. This example provides an illustration of plan-

4ning using preimages. Both guaranteed and EDR strategies for this problem are
* developed.

8.2. The Structure of Goals in Phase Space

In this section, we examine the structure of phase space goals in some detail,

using the general form of the preimage equations described above.

A goal in phase space is a region in Position-space x Velocity-space. A phase
space goal is attained when the actual position and velocity can be guaranteed to
lie in the region. We have actually been using phase space goals all along, since the

108

iA

ftMSPM (P)A

ms

* '
C

Pe

N S
N|

N a*

P x

I I

veloFig. 49. Position-space is one dimensional. Therefore phase space, which is
' Position-space x Velocity-space, is 2-dimensiona . The velocity "axis" is shown

fo vertically. r projects a position and velocity to the position. lift the strong
S preimage P to a cylinder ,r(P). We also obtain the cylinders over the weak

W but not strong preimage P P, and over the forward projection outside he
wek weak preimage, F- .

velocity sensors are used to recognize goals. The introduction of arbitrary phae

~space goals is problematic, see (Erdmann]. Here the goals are sufficiently simple
"," that these dangers are avoided.

-- ':'We begin with the simpler example. In fig. 26 we proposed a partition of the
B.forward projection F of R into three regions:

i I Strong preimage, P

Weak but not strong prejinage, P6 _ p

Forward projection outside the weak preimage, F - P.

109

.;V.
II, -- , -

Here, the partition was "good" for the purposes of EDR for all velocities, and
we could let H be the forward projection outside the weak preimage. We can

extend this partition into phase space as shown in fig. 49. There is a natural

projection ir of Position-space x Velocity-space onto Position-space which sends a
pair (x, velocity-at-x) to its position x. Given a region U in position space, we can

lift it to phase space to obtain r- (U), the cylinder of all velocities over U. A point

in ir-'(U) is (x,v) where x is in U, and v is any velocity at x. 9

We lift the partition by applying the inverse projection map to obtain a parti-

tion of phase space:

Cylinder over strong preimage, 7r
- (P)

Cylinder over weak but not strong preimage, ir-1(P5 - P)

Cylinder over forward projection outside the weak preimage, 7r- (F - 5).

See fig. 49. Now, the cylinder over G and the cylinder over F - 5 are the new goals
in phase space. The latter cylinder is the phase space EDR region for fig. 26. Both
are simply cylinders: all velocities are legal. 10

Now we must deal with the tricky sticking region H. in fig. 27. We begin by

lifting the partition to phase space again (see fig. 50). Next, we "mark off" regions
in the lifted partition to form a phase space EDR region, which we denote H. The
entire cylinder over F - P is clearly in H , since its projection (under W') is outside
the weak preimage. But the cylinder over H, is not entirely within H: only sticking
velocities over H, are.

Formally, H. is the set of all points x in the weak but not strong preimage,

such that sticking can occur at x. We wish to distinguish the sticking velocities in
H. Under generalized damper dynamics, these are essentially the zero velocities.

Le, Z(H,) denote the zero velocities over H,, that is, the set of pairs (x, 0) for x
in H.. This set is in phase space.11 Then we see that Z(H.) is also in the phase

space EDR region H. Thus H is the union of the sticking velocities over H., and

all velocities over the forward projection outside the weak preimage:

ft = Z(H,) U iK1 (F - P). (6)

9 The cylinders may then be intersected with the forward projection of R (in phase space)
,0; to obtain more constraint. This may be done by first restricting the domain of 7r to the

forward projection.
" The weak and strong preimage, and the forward projection are drawn Venn-diagrammatically

Sin one-dimension.

"We could also let Z(Hs) be the set of velocities over H, which are smaller than some
threshold.

110

i~r r

'I 0

0 -- -0
Z(H.) S

P7,am 5pere

IC

V i '1

p HS

Fig. 50. Compare fig. 49. We have indicated the sticking region Ho in the weak

preimage. The zero-velocities Z(H,) over H, are in the cylinder over H.. The
EDR region k is the union of Z(H,) and the shaded cylinders over the forward
projection outside the weak preimage F - P.

To use H as an EDR region, we must now ensure that H and the cylinder over
G are distinguishable goals. This amounts to allowing goals in phase space-that
is, allowing the preimage operator to take simple phase space goals as arguments,
and rewriting (3) as

P,R({ 7r 1 (G) }) = R. (3a)

The impact of (3a) is discussed in more detail in an appendix. One point is
worthy of comment. If the strong preimage is known, the definition of (phase space)

EDR regions is conutructive up to reachability. By this we mean that when backpro-
jections, set intersections and differences, and friction cones can be computed, then
so can H. With H is hand, we add the recognizability constraint (3a) to obtain an
EDR strategy.

111

%"

: ".-...4 -... . ..-. .-. -. ,- , . , ,- , - ; ,,,_. .- --- ,-, . % , , ,., , . -.- ,-.-.-

8.3. More on Weak Preimages

Armed both with the general form of the preimage equation, and with our
new grasp of the structure of phase-space goals, we now examine the structure of
the "weak but not strong preimage," P - P in more detail. It suggests a number
of implementation issues. Consider figs. 27,28 once more. Suppose we have a
trajectory originating in R, subject to the control uncertainty shown. We do not
wish to terminate the motion while it remains in the weak preimage, since fortuitous
sensing and control events could still force recognizable termination in G. However,
we can terminate the motion as soon as we recognize egress from the weak preimage.
This is why the forward projection outside the weak preiage is contained in the

EDR region.

As we have seen, however, it is possible for a trajectory to remain within the
weak but not strong preimage forever. For example, it can stick in H, forever. To

handle this case, we introduced phase space EDR goals.

There are other conditions under which a trajectory could stay in P - P forever:
(a) if the environment is infinite, or P - P is unbounded. (b) The trajectory "loops"
in P - P forever. (a) and (b) are qualitatively different from the case of sticking
forever in H, because they require motion for infinitely long. In practice this may
be handled by terminating the motion in P - P after a certain elapsed time. This is

-' called "constructing termination predicates which time-out." In fact, this "solution"

works for sticking in H, also.

An alternative is to extend our earlier zero-velocity analysis to all of P - P.
That is, we terminate the motion in the weak but not strong preimage when the
actual velocity is (close to) zero. Formally this rewrites (6) as

H= Z(P- P) U - 1 (F-P). (6a)

Both this and our formal handling of phase space goals for H. (6) are subject to the
"Rolles theorem bug." That is, a trajectory which "reverses direction" will have
zero velocity at some point. Hence by (6, 6a) it will be judged to have stuck. This
is undesirable. In practice this can be fixed by again requiring the trajectory to
stick for some elapsed time. Time-out termination predicates have the following

,. practical justification. We imagine some low-level control mechanism which detects

sticking, and after a certain time interval freezes the robot at that configuration and
signals termination. Presumably such a mechanism is designed to avoid damage to

* the robot from burning out its joint motors. It also avoids plans with long delays
while the planner waits for the motion to slide again.

The role of time in constructing EDR regions can be formalized by explicitly

introducing time into the goal specification. Thus, goals become regions in phase
space-time; poi.cs in goals have the form (x, v, t), where x is a position, v a velocity,

4 ,112

.1W, IF W
lh%

and t a time. Suppose given a goal G in generalized configuration space, we form a
phase space-time goal which is the product of 7r-'(G) with a compact time interval.
It seems that the EDR axioms are satisfiable by EDR regions which have the form
of a product of (6) with a compact time interval. More study is requirr i.

,a._

One also can conceive of alternative models for sticking behavior. H. is all
points in the weak but not strong preimage such that sticking might occur there.
Note that we cannot guarantee that sticking will occur, since then the point would
not be in the weak preimage. We could assume a probabilistic distribution of control
velocities in Bc In this case we could infer that eventually, given an unbounded

F'. amount of time, a motion will be commanded which will cause sliding away from
any point in H, at which a trajectory originating in R sticks. In this case, the

trajectory cannot stick forever in H,. I don't think robot controllers reliably en-
force probabilistic distributions of commanded velocities, even if "dithering" control
strategies are employed. Even if they could, this model of sticking makes life easier,

1

since it essentially eliminates the possibility of sticking forever in P P. We will
not make this assumption here. It does not address with the problem of "looping
forever" within P in finite environments. It seems that time-out termination
predicates and/or velocity thresholding must be used to solve the looping problem.
Both solutions seem inelegant; the issue is subtle and should be addre3sed further
in future research (see chapter VI).

8.3.1 Summary

When the goal is specified in phase space-time as the product of a cylinder over
a generalized configuration space goal with a compact time interval, our geometrical
characterization of EDi satisfies the EDR axioms. Without time, or with goals of
the form 7rbi(G) x [t, o), the definition of R does not completely fulfill the EDR

caxioms. This is because it is possible for motions sticking in H. to eventually slide

into the goal, violating the principle that no motion should be terminated as a
nfailure while serendipitous goal achievement is still possible.

113

. S %

When thegols speified n phe-ti a thproduct o .cyinder ov er % or.

III. Multi-Step Strategies

In this chapter we explore multi-step strategy construction. Now, in principle,

having reduced both model error and EDR to essentially "preimage-theoretic" equa-
tions, multi-step strategies could be synthesized by solving these preimage equa-
tions. While this is proved or at least implicit in previous work [LMT,Mason,E,D,
it is far from obvious; furthermore, there are almost no published examples of such
strategies. For this reason we begin by presenting a worked-out example of a motion
plan using preimages. The motion problem is grasp- -entering for a robot gripper
in the presence of model error. Both guaranteed and EDR strategies are found by
solving the preimage equations.

Preimages are a key underlying tool for the geometric EDR theory, and the
[LMT] framework is in some sense a "universal" method for synthesizing multi-step
strategies. However, the technique of solving the preimage equations is not com-
putational. For this reason, we introduce a construction called the push-forward.
Roughly speaking, the push-forward is that subset of the forward projection where
the motion can terminate. Since push-forwards address termination whereas for-
ward projections do not, we may regard them as "dual" to preimages. That is,
push-forwards are to forward projections as preimages are to backprojections. Sec-
ond, the push-forward permits us to develop rather simple algorithms for planning
multi-step strategies. These algorithms have been implemented in LIMITED. While
the push-forward method for multi-step strategy synthesis is algorithmic, it is less
general than the full preimage method (solving the preimage equations). We char-
acterize the loss of power in push-forward algorithms.

In chapter I we presented two EDR plans generated by LIMITED. These were
the peg-in-hole insertion strategy with model error, and the gear-meshing plan.
Both were two-step plans. We will go into more detail in describing how these
plans were generated. The peg-in-hole plan used push-forward techniques. The
gear plan used a seemingly unrelated technique called failure mode analysis. We
describe failure mode analysis and algorithms for computing it.

Next, we will present a view of multi-step strategies which essentially unifies all
these techniques. This is called the "weak" EDR theory. The motivation behind this
theory is that when a motion terminates ambiguously, a subsequent motion may be
synthesized which disambiguates the success or failure of the first. Oddly enough, it
is not necessary for either motion individually to satisfy the EDR axioms. However,
when taken together, the two-motion plan can often be considered "equivalent" to
a one-step EDR strategy.

The weak EDR theory effectively defines some laws of "composition" that per-
mit two single-step plans to be concatenated into a two-step plan satisfying the

d114

0%4

EDR axioms. Hence it is often possible to construct multi-step plans that are EDR
plans "globally" although not "locally". That is, considered as entire plans, they
satisfy the EDR axioms; this is the "global" condition. However, "locally" they
are not EDR plans, in that no single step is an EDR strategy. The key to pasting
together non-EDR plans to make a global EDR strategy lies in defining certain
local "niceness" conditions for how plans must mesh. These are called the linking
conditions.

When we cross-reference figures in another chapter, we denote this by 11.29 for
figure 29 in chapter 11, for example.

We remind the reader that starred sections may be skipped if desired.

7:

.1O'N

115

O ~
.1%. a: ' .A: .. ,.' ,_' ' ., .,.. ":"\. _?'" "." "."." . .k'..i ' -. ' ." .-.-. . .

9. Planning using Preimages: A Detailed Example

In this section we show how the [LMT] framework can be used to synthesize
multi-step strategies. Here are the key points of this section:

0 In principle, multi-step plans may be found by solving a family of preimage
equations.

While this was proved by [LMT,Mason,E], it is not obvious how to effect the
solution. This example intends to elucidate the process.

*.The technique is general enough to plan EDR strategies under model error,
once we have cast both the problem of planning with model error and the EDR
problem in an essentially "preimage-theoretic" form, as in [D] and chapter II.

0 However, the technique of solving the preimage equations is not algorithmic.

Furthermore, preimages are a key underlying tool for the geometric EDR the-
ory. It is necessary to make further acquaintance with preimages in order to con-
tinue our development of the EDR framework. To that end, this section presents
a worked-out example of a motion plan using preimages. The motion problem is
grasp-centering for a robot gripper in the presence of model error. The example
illustrates the use of the preimage framework to derive a multi-step motion strategy
in the presence of model error. The strategy employs time-sensing and force-sensing.
This discussion is designed both as a tutorial in solving preimage equations for a
motion plan, and as an introduction to the planning of multi-step strategies.

,* 9.1. Example: Planning Grasp-Centering using Preimages

The remainder of this thesis builds on the preinage framework to develop the

EDR theory. To make the framework more accessible, we provide here a fairly
detailed description of a motion planning problem using preimages.1

We are now ready to work an example. We solve a particular motion planning

j problem with model error by solving the preimage equations. This example provides
an illustration of planning using preimages. For simplicity, we initially address only
the problem of finding a guaranteed strategy. Finding EDR strategies in this domain
is discussed afterwards.

oO. Consider the grasp-centering problem shown in fig. 1. The task is to center
*- the robot gripper over the block D. The gripper can translate but not rotate in the

plane. In its start position, the gripper is somewhere over D, such that the bottom

1This problem arose in discussions with Tomr.s Lozano-PNrez, John Canny, and Mike
Erdmann.

€. 116

I,

0, : -.- , , -. :,-. ,., -. , . . - - .. . -.-. . .

of the fingers FA and FB are below the top of D. The width of D is unknown,
but must be less than the distance between FA and FB. We assume D is fixed (it

cannot be accidentally pushed).
Hence we can regard this as a planning problem with model error. C is taken

to be the cartesian plane, and J is a bounded interval of the positive reals. Our
first question is, what does the generalized configuration space look like? This is

easily answered by considering the motion planning problem in fig. 2. The problem
is to find a motion strategy for a point robot so that it can achieve a goal exactly
halfway between the blocks A and B. The distance a between A and B is unknown
and positive. The point robot is known to start between A and B. Again, the point

can translate in the plane. The distance a is the model error parameter. It is easy
to see that the problems in figs. 1 and 2 are equivalent.

* However, we already know what the generalized configuration space for fig. 2
looks like. It was discussed at length in chapter II, and is shown in fig. 11.14. Hence
our example is a planning problem in a familiar generalized configuration space.

Next, we assume that the robot has perfect control, perfect velocity sensing,
and a perfectly accurate sense of time. However, it has infinite position sensing
error. 2

SNow, since the gripper starts over D with the bottom of the fingers below the
top of D, and since the robot has perfect control, it suffices to consider the x axis

of C. Since the y axis can be ignored, we develop our example in the plane, that

is, in the generalized configuration space where C and J are both one-dimensional.
This 2D generalized configuration space is shown in fig. 3, which is essentially an

x-J cross-section of fig. 11.16, holding y constant wit a constrained to be positive.
In fig. 3, L and R are left and right obstacle edge boundaries generated by A and

B. The goal is the line in free-space bisecting L and R. The start region T is the
triangular region in free-space between L and R. (T is the convex hull of L and R).

Now, since motion across J is not permitted, all motions are parallel to the x
axis, that is to say, horizontal in fig. 3. There are only two kinds of motions the
planner can command. Let + denote a motion to the right, and - a motion to the

left. We assume the robot has perfect control over the magnitude as well as the
direction of the commanded velocity.

See fig. 3. Now, if a is a point on the J axis, let E, be the point on the
left obstacle edge L with J coordinate a. We will denote the collection of all such
points on L by { E, }. Let S, denote the maximal line segment within T containing

E0 and parallel to G. Formally, if E, has coordinates (x, a), then S0 is the line

segment extending from E, to (x, d) where d is an upper bound on the distance
between A and B. We denote the collection of all lines S, by { S, '.

2This example is easily generalized to non-zero control, time-sensing, and force-sensing
error, and finite position-sensing error. This requires giving the goal non-empty interior.
however.

117

-. %

•6A NA'

• VA" " .. " "' ' % * " % " " '% " , % ".,' - ", k . = % • - ,,5 - . - ". " "". • . "' " """" '

FA DIJ FB

1"0

Fig. 1. The grasp centering problem. The width of the block D on the table,
and the position of the gripper are only known approximately.

At this point we are prepared to derive a motion strategy for centering the
grasp, that is, for attaining G from T. The strategy has three steps. The termination
conditions for the motions involve time- and force-sens-ing. Here is the motion
strategy in qualitative terms:

Strategy Guarantee- Center

1. Command a motion to the right. Terminate on the right edge R based on force
sensing.
2. Command a velocity of known magnitude to the left. Terminate when in contact
with the left edge L, using force sensing. Measure the elapsed time of the motion.
Compute the distance traversed. This givesxc nweg fweetemto

terminated on L. The effect of this -step i to measure the distance ak between the
blocks.
3. Move distance ato the right, terminating in G based on time senii.ng.

l2

118

!~

=".'P FAr

% VAt hi pontwe reprpard o drie moio statgyforcetetngth

A B

Fig. 2. An equivalent problem. A point robot must be navigated halfway between
the blocks A and B. The distance between A and B is not known. The robot
has force sensing, and a clock. However, it has poor position sensing. We regard
C as R2 and J as the bounded interval (0, d] for d positive. The generalized
configuration space for this problem is the same as in fig. II. A, for the positive
values in J.

We now derive this strategy by solving the preimage equations for the motion
planning problem.

First, note that if the run-time executive knows that the robot is inside a
" particular S., then G can be reliably achieved by commanding a motion to the

right. Since the robot has perfect control and time sensing, the motion can be
terminated after moving distance 1-, that is, exactly when the line G is achieved.

Using the preimage notation, we write this as

P+,{s.(G) }. (1)

thtNext, we take the collection { S, } as a set of subgoals, and try to find a motion
that can recognizably attain this collection, and, furthermore, can distinguish which

119

04

~J

T

L R

Ns.

1kE E

C

Fig. 3. Assuming that the gripper fingers are initially lower than the top of the
block D, the y dimension can effectively be ignored. This allows us to examine a
cross-section of fig. 11.16. We treat C as the z axis of motion freedom, yielding
a 2D C x J planning space. L and R are obstacle boundaries in generalized
configuration space. The goal is the bisector G between L and R in free-space.
The start region T is the triangular region between L and R. Ea is a point on
L. Sa is a line in T parallel to G and containing Sa.

S the motion achieves. Consider a leftward motion starting from anywhere on the
.right edge R. The robot does not know where on R the motion starts, however. To

recognizably achieve some S., such a motion should move leftward, and terminate
when force-sensing indicates that L has been reached. If the termination predicate
measures the elapsed time of the motion, and knows the magnitude of the com-

@,1 manded velocity, then it can recognize which point E. has been reached, and hence
which subgoal S, has been achieved. Writing this down in preimage equations,

P-,R{ S 1) = P-,R({ E, }) = R. (2)

Finally, the right edge R may be achieved from anywhere within the start region

120

.

T by moving rightward, and terminating when force sensing indicates contact. This
is simply

P+,T(R) = T. (3)

It is instructive to examine the termination conditions for motions (1)-(3).
In motion (1), only the time-indexed forward projection F+(S, t) is relevant to
deciding termination. The motion terminates when F+(S, t) C G. Motion (3) can
be terminated using pure force sensing. It could also be terminated using time,
since there exists some t for which F+(T, t) = R. In motion (2), both force sensing
and time are required to terminate within a distinguishable E,,. The general form
of the termination condition for all three cases is as follows. Recall that in general,
the termination predicate has the form

F(U, t) n (Bp(t) x B×v(t)) C G,

for a goal G , and a start region U. (Assume that all subgoals have been lifted into
phase space; see sec. 8.2). In our case, position sensing error is infinite, so Bp(t) is

C x J. Let us denote (C x J) x B,,(t) by the simpler expression B,(t). Then the
termination conditions for motions (1)-(3) are as follows. For the first motion (3),
to terminate, we must have

F+(T,t) n B,(t) C R. (4)

For the second motion (2) to terminate, we must have

F_(R, t) n B,(t) c S, (5)

for some S,. We think of the termination predicate as "returning" this S,. Finally,
for termination of the last motion (1), we must have

F+(S) n B.(t) C G, (6)
U

where the Sc in (6) is the same as the one returned by the termination predicate
after the second motion as the satisfying assignment for (5).

Finally, note that time is the source of some complexity in this example. This
complexity might be removed by employing a distance sensor instead. The output

U of such a sensor could be modeled as position sensing in J. The sensing action in J
*- would entail measuring the distance between A and B. This relaxes the assumption

of no position sensing in the J dimensions, but such modification to the generalized
configuration space framework is trivial. With this modification, Bep is simply

regarded as a product of a position sensing ball in C and a position sensing set in

121 '

#.%% %

I" S
.?;,,..:'.".''?,:,': ,' &,'',: .'.:.':" v '-''.'':" '.".:"", ,.,.," ".,"-

,
:.v ,," . -:".. ." " ;" : "- " '"'- """" "

This concludes the example. We have shown how to derive a multi-step guar-
anteed motion strategy in the presence of model error. The strategy was derived
by solving the preimage equations in generalized configuration space for the motion
plan. These preimage equations made the role of time- and force-sensing explicit
in deriving conditions for distinguishable termination in a collection of subgoals.
With this example in mind, the reader should be well-equipped to wade into the
remainder of this thesis.

9.1.1 An EDR Strategy for Grasp-Centering

We now generalize the grasp-center example and show how to develop an EDR
strategy for this problem.

Assume that the radius of position sensing uncertainty is larger than the
diameter of T, but not infinite.' Furthermore, assume that a, the distance between
A and B, can be zero (but not negative) in the above example. That is, D can be
too big to grasp. Hence the hole between A and B can close up, as in fig. 11.16.
Assume that the gripper starts above the height of the block D, in the circular
region R in fig. 11.15. Generalize the discussion of preimages above to describe an
EDR strategy using preimages. We will need to consider the y dimension of motion
freedom as well, in the 3D generalized configuration space shown in fig. 11.16, but
only the non-negative a in J. Note that EDR is "required" here, since if a can be
zero, there exists no guaranteed strategy.

Let us rename the circular start region in fig. 11.15 to be U, and continue
to use R for the right edge in fig. 3. Assume that the x-J slice of generalized
configuration space in fig. 3 is taken at y = 0, i.e., at the level of the table, and

* that under the commanded motion vo, shown in fig. 11.15, sliding occurs on all
horizontal and vertical surfaces. However, clearly sticking will occur under v; on

the concave left edge L between A and the table.

Now, let H be as in fig. 11.24. Here is the EDR strategy in qualitative terms:

-'4 Strategy EDR- Center

SEl. From U, command the motion vg. Terminate on the left edge L based on
sticking, or in H based on time.

E2. If H is attained, signal failure. Otherwise, go to step (1) of strategy Guarantee-
Center.

3This assumption is not necessary, but it simplifies our discussion somewhat.

122
.4

04

:-- "-".-." ", . ""."-. . ."- -= . . "" "". - -"" ''.,.-'-..•",--2 .' '- , *,., *'2')", - / ._ .' "-e " . " '

-. ..,-, ., . ..- ' '.,o,. .-. ' ' -,- ' ' '-" .'." -- " ,.,r ,,-.,.- -. ,r . "t , "

Now, since H = 0, the preimage equation 4 (II.3a) for step (El) simply reduces
to

Pe,u({ L,H}) =U. (7)

At this point, the remainder of the strategy may be developed in the x-J slice
shown in fig. 3. To finish the preimage characterization of the EDR strategy, we
must replace eq. (3), which characterizes the first step (1) of strategy Guarantee.
Center, by

P+,L(R) = L. (8)

Note that (8) is actually a logical consequence of (3), since L is a subset of
T. Analogously, (4) must be changed by replacing T by L. The remainder of the
preimage equations (1)-(2) and (5)-(6) remain unchanged.

9.2. Solving the Preimage Equations is General but Not Computational

This example shows how multi-step EDR strategies under model error can be
generated by solving a family of preimage equations. However, the technique is not
an algorithm. We do not claim that such an algorithm could not be developed, but
merely that as described above and in [LMT,Mason,E, the method is not (yet) com-
putationaUy effective.5 The first reason it is non-computational is that the number
of subgoals { E,, } and { S', } is infinite. The second, and more important reason is
that solving the preimage equation is, as stated, a decision problem in second-order
set theory. Even if the sets are, say, algebraic, this theory is undecidable. However,
there may exist a reformulation of the problem rendering it decidable. Below we
describe one such reformulation, using push-forwards, which can be used in effect to
solve certain "simple" preimage equations and hence to generate a restricted class
of EDR plans.

*~44

0

0

4See sec. 8.2.
1 01 5 However, note that Erdmann's techniques of approximating preimages by backprojec-

tions may lead toward a fully-algorithmic method.

123

0i

'%.J. ..,.-. ., . . -.-.- ,- - ' . '.. - .o. - .- '--- " ., ". - .-- . .. , -. ... ' , -'-' ,' '. ., ..

10. Push-Forwards: A Simple Generalization to n-Step EDR
Strategies

The generalized preimage framework [LMT,Mason,E,D] gives a kind of "uni-
versa" method for generating multi-step EDR strategies. However, the technique
of solving the preimage equations is not algorithmic-it is more like doing a proof
by hand. For this reason, we introduce the push-forward technique for synthesizing

multi-step strategies. While considerably less general than solving the full preimage
equations, it leads to rather simple multi-step strategy-generation algorithms, which
were implemented in LIMITED. The push-forward technique is powerful enough to

generate an EDR plan for the peg-in-hole insertion strategy with model error de-
scribed in chapter I. However, it is not general enough to solve all steps of the

grasp-centering example discussed above. This gives us a measure of the relative
power of push-forward vs. preimage equation techniques.

This section first discusses the push-forward technique for synthesizing n-step
EDR strategies in some detail. When we cross-reference figures in another chapter,
we denote this by 11.29 for figure 29 in chapter II, for example.

We first review the "Twin Universe" example (3) (figs. 11.29,11.30), highlighting
a subtle recognizability issue not emphasized in the prelude. However, this review
may be skipped at first reading if you already have example (3) firmly in mind.

A Review of the "Twin Universe" Example (3)

Consider fig. 11.29. Here there are two possible universes, both in the plane, so J is
the two element discrete set, 1 1,2 }. The start region is the union of R1 in universe

1, and R 2 in universe 2. The goal exists in universe 1 but not in universe 2. There
is no one-step EDR strategy which, from the start region, can guarantee to achieve
G or recognize that we are in universe 2. In particular, there is no one-step EDR

strategy which can be derived from the motion v;.

However, there clearly exist multi-step EDR strategies. We will construct one

as follows. Recall that to construct one-step EDR strategies, we took as data a
goal, a start region R, a commanded motion 0, and the preimage of the goal under

0. Given this data we constructed an EDR region. From the EDR region, we
attempted to construct an EDR strategy that achieved the distinguishable union of
the goal or the EDR region. Now, why does this fail in fig. 11.29? To answer this

question, let us consider what the motion 9 was supposed to achieve in universe

1. There is an 8-step plan in universe 1 which recognizably achieves G from start

region R 1 . It is obtained by back-chaining preimages in universe 1. The plan moves
from R 1 to the region S, under v*. Then it slides along the top surface to vertex

124

4-

.f. Next it slides to vertex e. It slides to the successive vertex subgoals d through
a, and then a horizontal sliding motion achieves the goal G.

The strategy 6 is guaranteed to achieve the surface S, from start region R 1 .
Suppose we try to extend it to an EDR strategy with start region the union of R,
and R 2 . The EDR region is then simply the (cylinder over the) forward projection
of the "bad" region, F#(R 2). (See fig. 11.29). There is no way that the termination
predicate can distinguish between the forward projection of R, and the forward
projection of R 2 , hence no EDR strategy from 0 exists.

We can easily construct a 2-step EDR strategy, however. First, we execute
motion 6 from the union of R 1 and R 2. This achieves a motion into S, in universe
1, or into S 2 in universe 2. The termination predicate cannot distinguish which has
been attained. Suppose the second motion in the 8-step plan is v, (see fig. 11.29),
and is guaranteed to achieve the vertex subgoal f from start region S1. We will try

N4 to construct an EDR strategy out of this second motion. Take as data: the subgoal
'.5" f, the start region S, U S2, the "southwest" motion 4, and the preimage of f under

0.' The EDR region for these data is the forward projection of S2 under 4 (see
fig. 11.30). Presumably this EDR region is (eventually) distinguishable from ,and
so we have constructed an EDR strategy at the second step. After executing the
second step, we either terminate the motion as a failure, or proceed to vertex e, and
eventually to the goal.

10.1. Generalization: Push-Forwards

Now, let us attempt to capture the salient aspects of the n-step EDR strategy
construction. We take as data an n-step plan, with start region Ri. The actual
start region is some larger region, say, R. Above, we had R as the union of R, and
R 2 . The first motion in the plan is guaranteed to achieve some subgoal S, from R 1 .
Using this first motion from start region R, we try to construct an EDR region H1 ,
and a one-step EDR strategy that either achieves S1 or signals failure by achieving
H 1 . If this succeeds, we are, of course, done.

* Suppose we cannot distinguish between H, and S1. In this case, we want to
execute the first motion "anyway," and terminate "somewhere" in the union of S,
and H1 . The termination predicate cannot be guaranteed to distinguish which goal
has been entered.

This "somewhere" is called the push-forward of the first motion from R. The
push-forward is a function of the commanded motion 6, the actual start region

1hile S1 is the preimage of f under 0 with respect to start region S1, the preimage

with respect to the entire forward projection of S U S2 includes the top edge between

S1 and f. See sec. 8.

,. .. 125

%

4 "5 "% %% • -" r%" "" W,""-' % %•%% %"
' "

%% " %
%

%%
=

R, the region R, from which 0 is guaranteed, and the subgoal S1 .2 A particular
type of push-forward is defined formally in an appendix; we describe it informally
below. In example (3), the push-forward (under 9) of R 2 is 52. The push-forward

of R, U R 2 is S, U S2. The push-forward ;tnilar to a forward projection, except
that it addresses the issue of termination. In example (3), informally speaking, the

push-forward from the region R (under some commanded motion 9) is the result of
executing 9 from R and seeing what happens. It is defined even when the strategy

9 is only guaranteed from some subset (R 1) of R.

Having terminated in the push-forward of R (the union of S1 and S 2 above),
we next try to construct a one-step EDR strategy at the second motion of the n-
step plan. The data are: the next subgoal T after S, in the plan, the actual start

region S1 U S 2, the second commanded motion in the plan, and the preimage of T1

under this motion.3 This defines a formal procedure for constructing n-step EDR
strategies. At each stage we attempt to construct a one-step EDR strategy; if this

fails, we push-forward and try again.

Actually, this description of the procedure is not quite complete. At each step
* we construct the EDR region as described. However, the one-step strategy we seek

must achieve the distinguishable union of the EDR region and all unattained subgoals
in the plan. That is, the EDR motion must distinguishably terminate in the EDR
region, or the next subgoal, or any subsequent subgoal. This allows serendipitous
skipping of steps in the plan.

By considering different data, that is, quantifying over al motions at each
branch point of the n-step strategy, we can in principle consider all n-step strategies

and define non-directional EDR strategies. This is at least as difficult as computing
n-step non-directional preimages. If we wish to consider plans of different lengths,
we must also quantify over all n. Needless to say, the branching factor in the

back-chaining search would be quite large.

10.2. More on the Push-Forward

* The problem of defining the push-forward may be stated informally as follows:
"Where should the motion be terminated so that later, after some additional number

of push-forwards, a one-step EDR strategy may be executed."

Many different push-forwards can be defined. Using the notation above, note
the motion is not even guaranteed to terminate when executed from R: it is only

guaranteed from R 1 . This means that velocity-thresholding and time may be neces-
sary in the termination predicate. There are other difficulties: for example, a priori

20f course, it also depends on the termination predicate, sensing and control character-
istics, etc.

3 The preimage is with respect to the forward projection of the actual start region S1 US 2 .

126

0,

it is not even necessary that entry into the union of the subgoal S1 and the EDR
region H1 be recognizable. Thus defining the push-forward is equivalent to defining
where in $ U H, the motion can and should be terminated. (However, see note (1)
in the appendix).

Depending on that push-forward is employed, we may or may not obtain an n-
step EDR strategy. It is possible to define constraints on the push-forward that must
be satisfied to ensure that a strategy will be found if one exists. These constraints
are given in an appendix. While in the appendix we can give equations that the
push-forward must satisfy, at this time a constructive definition is not known. This
situation is similar to, and possibly harder than the problem of solving the general

-pre-image equation.

10.3. An Approximation to the Push-Forward

We may have to approximate the desired push-forward. We give such an ap-
proximation here. In general, it does not satisfy the constraints given in the ap-
pendix. We provide it to show what the push-forwards alluded to above are like.
Such approximate push-forwards may prove useful in approximating the desired
push-forward. The issue deserves more study. Since this approximate push-forward
is incomplete, the reader should consider its description here as illustrative of the
research problem, and not as an endorsement.

The push-forward employed in example (3) was formed by "executing the strat-
egy anyway, and seeing where it terminated." How do we formalize this idea?
Consider the termination predicate as a function of the starting region, the initial

*q sensed position, the commanded velocity, the goal(s), and the sensor values. The
sensor values are changing; the predicate monitors them to determine when the goal
has been reached. Now, if the termination predicate "knew" that in example (3)
the start region was the union of R 1 and R 2 , then the first motion strategy 0 could
never be terminated: the predicate could never ensure that the subgoal S, had been
reached. This is simply because S, and S 2 are indistinguishable. But if we "lie" to
the termination predicate and tell it that the motion really started in R 1 , then the
predicate will happily terminate the motion in S1 U 52, thinking that S has been
achieved. Viewing the termination predicate as a function, this reduces to calling
it with the "wrong" arguments, that is, applying it to R, instead of R1 U R 2 . The
push-forward we obtain is "where the termination predicate will halt the motion
from all of R, U R 2, thinking that the motion originated in RI." S 2 is obtained as
the set of places outside of S1 where the lied-to termination predicate can halt.

Even formalizing the construction of this simple push-forward is subtle; de-
tails are given in an appendix. While this approximate push-forward is incomplete,
it does suffice for a wide variety of EDR tasks. The approximate push-forward

127

,I~.

0,.r,"..-" ~ ... *. - .. *~ . S ~ f '~.%

captures the intuitive notion of "trying the strategy anyway, even if we're nct guar-
anteed to be in the right initial region." It is incomplete because it fails to exploit
sufficiently the geometry of the forward projection of the "bad" region. Better

push-forwards must be found; this one is merely illustrative of the problems.

10.4. Example: Multi-step EDR Plan for Peg-in-Hole with Model

Error

The advantage of the push-forward technique is that it can be made computa-
tional. We now give LIMITED's algorithm for generating multi-step strategies using

push-forwards, and describe an experiment which used this method.

Recall chapter I, figs. 6-16, which described a two-step EDR plan for a peg-
in-hole plan with 3 DOF model error. Here is how this multi-step strategy was
generated:

Algorithm Multi

1. First, try to generate a one-step EDR strategy using the algorithm in sec. 6.3.

Suppose this fails. Then:
2. Generate a commanded velocity v;, such that the forward projection of the start

region intersectb the goal in some slice.

3. Compute the EDR region H for ve.

4. Compute the sticking push-forward of the motion, R, = push 9 (G u H).

5. Using R 1 as the start region, generate a one-step EDR strategy uing the algo-
rithm in sec. 6.3.

Of course, in LIMITED the computation is memoized so that the projection

and EDR regions computed in step (1) are not recalculated in steps (2) and (3).

Obviously, we can extend this algorithm to generate longer strategies which push-
forward several times and finally terminate in a single-step EDR strategy.

Now, LIMITED is a multi-resolution planner. The algorithm outlined above
generates a multi-step strategy at a single resolution. The resolution of planning is
simply the set of a values in which slices are taken. A resolution S, is finer than
S2 if it contains more slices. The multi-resolution outer loop works like this:

Ml. At a coarse resolution, generate a multi-step EDR strategy O1,..n.,9, using the

forward-chaining single-resolution algorithm above.

.M2. Select a finer resolution. Use the directions 01,.. ., On as a suggested strategy

and attempt to verify that it is an EDR strategy at the finer resolution.

128

%%
04 ,
.51. * . . % % • , % . a w l q- " " .' "'' ' ," " """

° • a
"I

M3. If 81,...,, is not an EDR strategy at the finer resolution, try to modify it
so that it is, by uing 01,... ,, as suggested directions, and searching nearby
directions at all levels.

The process terminates when the resolution is finer than some predetermined
level.4 The critical slice method described in chapter II may be one way to obtain
such an a priori bound and know that it is sufficient. In LIMITED, however, the
bound is a user input because otherwise the number of slices required would be

prohibitive.

In the peg-in-hole example there were 3DOF of model error: the width of the
hole, the depth of the chamfers, and the orientation of the hole. The resolutions
used in planning the two-step strategy were as follows:

R1. Holding orientation fixed, 4 slices of the depth x width axes.
R2. Holding orientation fixed, 16 slices of the depth x width axes.

R3. Holding orientation fixed, 72 slices of the depth x width axes.
R4. 100 slices of the depth x width x orientation axes.

The figures show details of the slices and the plan.

10.5. The Loss of Power with Push-Forward Techniques

While push-forwards permit us to develop simple algorithms for generating
multi-step strategies, clearly these algorithms are theoretically less powerful than
solving the preimage equations in full generality. We now attempt to give an intu-
itive characterization of the loss of power. In particular, push-forwards are general
enough for the peg-in-hole EDR strategy with model error. However, they are not
general enough to generate the grasp-centering plan. We now discuss where in

the grasp-centering example the push-forward techniques are inadequate. The key
point is this: if each commanded motion and termination condition could be non-
deterministically "guessed," and a push-forward for each motion and termination
condition could be computed, then in the grasp-center example this would suffice
to generate a strategy. However, the push-forward algorithms we have developed
are not powerful enough to do this.

First, let us derive the push-forwards of each motion in strategies EDR-Center
and Guarantee- Center. Recall that El is the first step of the EDR plan, and motions
1, 2, and 3 are steps in the (subsequent) guaranteed plan. In the third column we
note whether or not the push-forward technique is computationally effective for this

:.4 motion.

-, 4 0r, when at some level, no EDR strategy can be found.

129

-4

*4~%

0~%* v.11

.1

Motion Push - Forward Computational?

El {L,H} yes
1 R yes
2 {E.} no
3 G no

The push-forwards for motions El and I can be computed using the algorithms
of sec. 6.2 and algorithm Multi above. In motion El, L may be found using

.5 sticking termination. H may be found using time, or position and force sensing

termination. In motion 1, R may be found using contact, or sticking termination.

However, our algorithms cannot compute the push-forward { E,, }, which contains
an infinite number of components. Furthermore, we have not developed algorithms
for computing push-forwards based on time-termination (except for elapsed time

5termination, of the form "terminate anytime after t seconds"). Thus the push-
forward G for the last motion cannot be computed by our algorithms either.

10.5.1 Discussion

Let us pause to review. We first described a fully-general, but non-computational
technique for generating multi-step strategies. This method-solving the preimage
equations-was applied to the grasp-centering example. Next the push-forward
techniques were introduced as a computational, although less powerful approach
to the synthesis of multi-step strategies. Push-forward algorithms were described,
and we saw how LIMITED used these techniques to generate a two-step plan for
the peg-in-hole problem with model error. Finally, we discussed the limitations of

the push-forward techniques. We saw that they were not powerful enough to solve
the grasp-center problem in its entirety. By describing an experiment where push-
forwards suffice, and showing an example where they are insufficiently general, we

have tried to give an intuitive but fairly precise characterization for the relative

power of push-forwards.

130

4

.,.

% %

,* ' , T . - .1 - - . -.--r r- .- r'-, --.
L

.t-, - !-r' ... --- r . .. , ,- , . . . , ,

-t7

* - ,-,.

:4

- --

'. Fig. 4. Configuration space slices at resolution R3: holding orientation fixed, 72
slices of the depth x width axes.

131

,,",

p!

"1L

- - C
% 19

b la a a a a a•0

a a a a-e A a a

a a a1 a a a ai- "

* 0
• | I ,Q U

i "

F .. t artrgo an ea ale (A aouto a a.

': -" 13
- ,%.,

a- a a a

U e

0- 0 0 a 0 0 .

V %

i -- I

V.2

04

.'.'-Fig. 8. Weak backprojection of the goal under motion 01. (At resolution R3).

*135

"' u

IL 11 7 .i-
1

. 0

- - m , U

1 ,

I_
A% i - -

*4 a160

* ,9

- - -- o L

• .0 a

Fig. 9. Weak backprojection of the goal under motion 01. Obstacles not shown.
~(At resolution R3).

'4

WA.
A[.

:, 138

04

S- , ., ' -. .'., ." "-. -. -.- : .'.- .-. . ---.-- -- '- " 2, 4-., ' . .

-ILI

Fig. 10. Forward projection of start region under motion 81. Obstacles not
shown. The arrow shows an edge of the forward projection that reached the

S1 goal. (At resolution 113).

137

'p.

40.

-,U

"r"

.R4)

0o

.138

I a

• °

Uq

iq Aa

a

'iii"..Fig. 11. Forward projection of the start region under motion e1. (At resolution

' R3).

• " 138

o..

113

%I

'P.

ph..

*1.

- - - - -

5,

'4
Sd

U

-- a-' *
'5
0.

.0

.0
* . U

F!
1*

a

'5
£

-i

5'. - C.

.5-
U
C

* .0
UEs-Si- ~ S

Fig. 13. Sticking in the weak minus strong backprojection for 9~. (H. region).

0 (At resolution R3).

~-.5
4

"A

140
5."

5"

45~~~

415

*

il i - -

1111 i dlkk

14

'vi'

t0 ,

sliin int ol(tr eouinR)

!142

FZLBALKKO °
KLLKKKL O°

00

, ' ', " -" -. "- - "- -" " - ".' "0 -, I"

- - -

'14

00

- -1

': Z4 S

Fig.17.Allvertcesof he O ED reion (A resluton 13)

144

1 0.

dIN UO

R3).

145

F-L 111I

14:1

.N1

Fig. 20. Strong backprojection of goal under motion 82- (At resolution R3).

147

LN

r -r r: P PP

Ir

r, 'r'

r r i to .

ifil
: " 'r

___._ _ __ _ _

Fig. 21. Weak backprojection of goal under motion 82. Obstacles not shown.
(At resolution R.3).

148

0.,

* aI

Fig. 22. Weak backprojection of the goal under motion 02. (At resolution 113).

149

" ' ':"Z""- ' " "'.............................. ' ""....... "".........".-.".

.4A.

fiifiiiii ii

IS

-10

NC

%S

p.'

'4

*

''4.

/

1'
.1

"4.
a

4,

S

S

-w

a'

4I*.

44.

S.d.

Fig. 24. Forward projection of the start region under motion ~2* Obstacles are

shown. (At resolution R3).

S

151

'4-.

0

Op O ~ * P Op *V Op

S..(

.1*6

i i i

• - P *

U LB2 " " "

- _ __ __ _

Fi. 5.Wek ins trn "acprcion fo "2 A eolto .)

I | I

N

as i '

I . .

I .

'V

I . .

I I I H

.1
U

r o

I I
IA
fig

3

II.
- - - - - - - -I.

~ 1%** 11
- S.
- liz

--V. V.~

* Fig. 26. Sticking in the weak minus strong backprojection for 02. (H. region).

(At resolution R3).

.4.
I~*~ ~

153
"I.

@4

4,.,

-4b

U**UUU**UU

C. o** U **U
.4.. .A - la u M

4,, hh ,h hhh•
.,-," m Iml(Im Iml lml Im

.. m+. re (A+(At resolutioni:

* ". .
Im m m lm m m lm l --

4-. +

154 ,

V: Im) Am .

-N ,
04 k... kkk+.k

va•

*!i L i. , . . " U

Mv J. U

C: C L,: C 1 :o

,,, .. A ". ~ ..

I - C] - IL

L. IL-l - - 1S

Fig. 28. Ho EDR region for e2 (shown without fill to illustrate degenerate edges).
(At resolution R3).

155

01

ION

4" 4

ON

4

.14

.4.'

"-twi * * -4 4 *L . * [!* $ ~ ' '

-~ .* *~ ' ~ ~ ' * *
%

L L

V LL

1157

%%%.

% %t

A. L op

15T5

9/

_ -- - - -

0I I 01 01 0 1. 0 1 I - .0

-f..,:•

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 A

0 0

0 0 *b 01 0 0 0 * 0 * 0
V .-:' " -" a. -

GA

0
0

06 03 03 OS 0 03 03 03

,"- - ft.,

*I c

. Fig. 31. The ED region H H H, for 02 is distinguishable from the goal.

,0o (At resolution R,3).

&,...,--

" " " 158

-~% %

. .'-~
. 0 ~ 00 U,

S.v

KL

IL ,
;.1

IL

~Fig. 32. In figs. 32-40 we examine the commanded motion 02 in detail for one

slice. The slice occurs at resolution R3, for a ;w (.9,.34). Fig. 32 shows the start
region in this slice, which is the push-forward of motion 01 (Actually, this start

. region should include the entire left edge of the bounding box- A portion of the

. edge was not found due to a numerical error).

ISOS

r. F- M
%akU

% % % %

5%

'

?"I

".

-..

-'N'

I

-" Fig. 33. Strong backprojection of the goal under 62. (Detail of motion 62 in slice
*"' a (.9, .34)).

f '

04

'..

,.

~Fig. 34. Weak backprojection of the goal under motion e2. (Detail of motion 2

,@ , in slice a (.9, .34)).

~161

*1.2

MQ .N

^1 IV°'

0

%' ,i
%

41?

, Fig. 36. Forward projection under 02 of the push-forward of 1. The obstacles

O, are shown as well. (Detail of motion 02 in slice a ; (.9,.34)).

4163

4.r

4.18

0&

N.

._

Fig. 37. Weak minus strong backprojection under 02. (Detail of motion 02 in
slice a f (.9,.34)).

164

:?.V*:'D

I"I.

i.; 1

6 4
a ,

9,,

10

a

1

DU

.

Sb

S.

G-o6-

.O;.

rI ,

~165

...

,

'

' .

A.' Fig. 39. H0 region for motion 93. Shown amidst obstacles. (Detail of motion 93
in slice a (.9, .34)).

S,:

,.16

'I" "8o

"N-
-N -N ,q

.
W w " e d 4€ " .

.f-N :.; ?,,..,:i. ,', i !., ' . : y . . ? ; ' ,: -- ' .-.',-.-. ,- .. ,'''':

',

'a
V.

"a

a,.

-i

I- 1

EEEE.1 -Ij

Fig 4. onfguaton pae lies t eslutonR4 10 sics f te eph
widt x oretto axes. Afe fniga stteyhtsuccesa eo

luin 1-1, n sn tasasgetdsraeya eouto 4 IIE

fon hstw-tpE Rplna eolto 4i 88mnts

oQ IQ 0 0 1 a 1 a

qQ IQ I Q I

a a a a a I Q a

4 a siaa. a o a

.119

I I I

Q ° aa a a" a 0o a a a :
io ° :o . ° o o :

i " : ' " "

i "
a 0 a a 0 a a a a a , S

0 a

~Fig. 42. Start region in each slice. (At resolution R4).

'O,

04:

[o r , V,, U* ,*%U tU ;V' -. 'v* - f' f.-..-

4

4

I.

~ a a a a a a a a a

a a a a a a a a a a

a a a a a a a a a a
A - - - -- - --

a a a a a a i a a a

U U 0 0 0 0 0 0 0 U

I U U U I I 1 1 U I

'4 a a a a u a a a a a

a a a a a a a a a a

I 5 5 5 5 5 5 5 5 5

a -*- -

9 5-
A

4 0 0 5 5 0

I

5,

g I

.1 Fig. 43. Goal region in each slice. (At resolution R4).

.54

I
170

*
a.5 *~. **%~S~**~ %~ 44~

',',"Fig. 44. Strong backprojection of goal under motion 01. (At resolution R4).

1

,'4'

'N

- r~wrrr.rr 'r'r'r 'r r -r

4

.4.

4

UI

F-4
M1. p

- I.-

U
F-1 ~-ii

Fig. 45. Weak backprojection of the goal under motion 9~. (At resolution R4).

.4

172

0

, .. t. mM-

5%

S I . .

•- a - U -I, :1

S."

: i :

•. 173 ; II

A5 '.

-%*l
SI,,,

*d

v •i -"-

-J

-P.

'p.

'p

'PP

0

Fi.4.Fr"dpoeto fsatreinudrmto 1 btce o

' 174

'P'S

i'

IVV

-S1-

xs,

21

"-!"}i:"Fig. 48. Forward projection of the start region under motion e1. (At resolution

..-[175

.5 ,

-S.s

' '
*1 -,i - - -

.1 -

A A

+"; ' ' \ \
0

v i.4.Wakmnssrn b"krjeto "o A eouinH)

i.. .5 \ ,

55 176

o4

V4W

St

Fig. 0. Sickig in he wak mnus srongbackrojecion or 0. (.rgo)

177~

6 3

Fig. 51. HO EDR region for 01. (Forward projection minus weak backprojection).
(At resolution R.4).

178

VIP v 0~ ?..NOS.0d.16 -e.VI

" .

S.. : k -
. .",

r..

= ;: ' .

..-:., . ,. -:..-..,",..
,., -,. ,..; ,- . , .,

J~I

SC

*4,

,55*

S.

-F

0

Fig. 53. Ho EDR region for 9 i, shown amidst obstacles. (At resolution R4).

0

'S

'p4
180

0

.. *~~C

up. SI. ,.~ ~A5 ~
*5*S~ * C.' *

,,., .Jt

-- p1

IE '"

.. :...: 34)

:0

- 18

NS

*.1

r r

I r
I (((' f /

r

fowr/tr rego in eahlie (reouto R4).

r) I € , :: , :,

-i ' ' i i ' ''

-JIr r i i~ , ' ' ,

N -. ... -- -

-f-_frwr/tr rego in e hsie (A reouto (4).

18-

04

S

N%

-~~~ ~ ~ --- -- - - - - - - - -- - - - - - - -- - --- --

'4.L

1183

W, e.

%

Fig. 57. Weak backprojection of the goal under motion e2. (At resolution R4).

184

r~ r ,r k r r iv 'e
-- r - F, -~~r r

.. rr r; r I

JI-

Fi .5. W. b a k ret o of g o l u d r m t o 2 b t c e o w.

(A resolution R4).

4185

9r-ir
.! ;

4r- i

? r-, r r ,6

-. • .

II
Fig. 58. Wea backprojection of goal under motion 02. Obstacles not shown.

4j (At resolution B4).

185

-- ' % ,/, 9,', - 4-,. ,," ', ' ,, ' ,j," ,,,'.** ."., ,. -4- \ , --.-- , ,-. ., -. ,4.4.r ,.- % ,-,,.-, . . , .- -. . -, - . - _ ,. ,. ,

No 6w'1wrr'wr Ir.~ if. 6
-

*1186

L~*

ih i gGigi~ki

---- ~ Ga G: G

a

'.'-'."Fig. 59. Forward projection of start region under motion O2. Obstacles not
".-'" shown. (At resolution Rt4).

S..

-, 186

.4

I I

I I-

I I I

J..

1~

A

- V ~ p p
-4

- - - - - - V p

pp.. p p -

p~p

- -.v

- - -- It
I

v .4:1

* t----------
I> - j1~
-p.

--------------------- 4:..
1A

~ 32

*p/pp~ 1~.
A. * -' -

* _ K ~

E~ f I Weak mm us ~tron~ b&~ ,, ~rte~ t ~m r 4:~ -\t esoIu?.~.n R4

@1

pp.

pg.

188

-, p p p. *. p -. * -**. .. * ~ *p pp.~.. \,..YY. J*,*....*~,*,-. *.~ -p * -. p.P*..* *-*p-p*. - - - p ppp-p.-. pp...p..,-,. -. *-ppp.- - *- * .p..p. *~~%P *~ ~

-MI487 64 ERROR DETECTION AMD RECOVERY FOR ROBOT NOTION PLEWYO V
WITH UNCERTAINTY(U) MASSACHUJSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB 8 R DONALDI UNCLASSIFIED JUL 87 AI-TR-982 1498014-85-K-812 F/C 12/9 U

11tH ~ .8
111.25 1111 4. ''II1.6

M KCPY RESOLUJT .N TEST CHART

1 96,3.A

I I

I I S I

S.

N a I

I a I

V - - - -- - - -- - I

II. S
bS
IN

- - -

In
*5~~

w
- - - ------ a

* .1
£

I I I I
I

- -- - -- S

.S~. I
V. * S * I I aU

da

'S

I'..

'U

Fig. 62. Sticking in the weak minus strong backprojection for 92. (H. region).
(At resolution BA).

a'

0:

SI,

I,

I,

I,

1 ~
-p

S-p

'p

~-:-~~:~ ~SSp ~ 4' ~ \.J.\~S" -p ~ ''.'* **~ S ~**I
S . * II..* * *,~15 ,~S* -. .~.,- *..* - ,* ~I5 15

k- L

*LL I

1 90

r.

Zell"

ai

.1 4 d

4..:

4

-. 3
h.4

4 U
L4

a
a

* 4 * a

- C

N

a a N US
V

em.
U.-a

*
a-u

Cd
U

.4, ,~4, Ii.
* a

*6
ma
I-

- ;r.
.4 4 ii

*

Fig. 65. All vertices of the Ho EDR region. (At resolution R.4).

Se.'

.p.

S

192

-S..
.4

.4~. -S

04

-S .-- '-,. - --55 -~. S S

inin~ '~5~y~ ~ ~ ~ . S. '~ .*.~ .. /. .~ .5 * .~* - ~

Ot 05

~~" ', .k 0 :;' 0, *; 0% 0' 0%

,-
10., 0 *-01 0. 1

6-t . L ' , o L"

b. f ;o 1

~. . 01 x 0 0. 1

LO *' L- L O

' " °. 0%' 0% ' 0i

Fig. 66. The EDR region H H0 U H. for 02 is distinguishable from the goal.

0(At

resolution R4).

193S

-'" 11. Failure Mode Analysis

Push-forward techniques require a precise geometrical characterization of the
forward-projection, and algorithms for computing it. The gear-meshing example of
chapter I is a problem in a four-dimensional generalized configuration space with

pushing. Two of the dimensions are rotational: one of these can be commanded, and
the other cannot, but the position along this dimension may be changed via pushing.
It is difficult to develop good forward projection algorithms in this generalized

"onfiguration space, although our critical-slice methods are a start. For this reason,
a different technique was developed for planning multi-step strategies in this domain.
It is applicable for any generalized configuration space with the same degrees of
freedom and pushing characteristics (that is, any polygonal shapes in place of the

gears). The new technique is called failure mode analysis; we describe it in this
section.

Failure-mode analysis is a method for synthesizing multi-step strategies using
a kind of "approximate" or "a priori" forward projection. At first glance, it may
appear unrelated to push-forward or preimage techniques. However, in the next

section, on the weak EDR theory, we present a viewpoint which essentially "unifies"
the three approaches.

11.1. Example: Multi-Step Strategy for Gear Meshing

Recall the gear-meshing plan LIMITED generated in chapter I, fig. 4. Consider
t, the problem of meshing two planar gears, under uncertainty as in chapters I and

II. Suppose that gear B can rotate passively but has unknown initial orientation,
as above. Suppose that A has been gripped by a robot. The initial position of A is
uncertain. The robot can impart either pure forces (translations), or pure torques
(rotations) to A. The planner can choose the direction of translation or rotation.
Can a multi-step strategy of commanded translations and rotations be found to
mesh the gears?

LIMITED was able to generate an EDR strategy for this problem. The charac-
teristics of the experiment are:

1. There are three degrees of motion freedom (two translational and one rota-
0.I1 tional) for A.

2. There is one degree of rotational model error freedom (the orientation of B).

A 3. Pushing is possible to change the orientation of B.

4. There is sensing and control uncertainty.

5. The geometry of the gears is complicated.

194

6. Quasi-static analysis is used to model the physics of interaction between the
gears.
7. We suppose that vision is poor, or that the gears are accessible to the robot
gripper, but not to the camera. This means that position sensing will be very
inaccurate, and hence may be of no use to determine whether the gears are suc-
cessfully meshed. This will often be the case in practice. In this case, force sensing
must be used to disambiguate the success of the first motion (meshing) from failure
(jamming in an unmeshed state).
8. Hence, a multi-step strategy is required.

Thus we have a kind of four-degree of freedom planning problem with uncer-
tainty and pushing. To generate multi-step EDR strategies under pushing, LIMITED

uses the EDR theory together with failure mode analysis. Here is the plan LIMITED

generates:

01. Command a pure translation of A into B. 1

Terminate the motion based on force-sensing when sticking occurs (when there
is no motion).

02. Command a pure rotation of A.
If breaking contact or sticking occurs, signal failure. Otherwise, signal success.

In this plan, motion 01 does not terminate distinguishably in success (meshed)
or failure (jammed). That is, after motion 01 terminates, the plan executive cannot
necessarily recognize whether or not the gears are meshed. LIMITED predicts this,
and generates motion 02, which disambiguates the result of motion 01. The genera-
tion of the second, disambiguating motion involves the use of failure mode analysis.
Breaking contact and sticking are examples of failure modes. The second motion is
generated so that from any unmeshed state resulting from motion 01, all possible
paths will terminate distinguishably in a failure mode. Failure mode analysis is a

W robust subtheory of EDR by which LIMITED generates multi-step strategies under
pushing.

11.2. Introduction to Failure Mode Analysis

In the gear-meshing plan, motion 02 is used to disambiguate the result of motion
01. The technique used is failure mode analysis. LIMITED is given a repertory of
qualitative failure modes, which comprise sticking and breaking contact. Motion

01 can end in a "good" region (meshed) or a "bad" region (jam). LIMITED tried
to generate a disambiguating motion as a second step. This motion is required to

e.~e. terminate in a failure mode from all "bad" regions.

'LIMITED generates the actual force vector v;.

195

It

It . '"N. ,0,k N,, . , , - - - . . ""

Here is how LIMITED generates motion 02. Let H be the EDR region for
motion 01. The planner determines all configurations where motion 01 can terminate
outside of G. Call this region pusher (H). pusher (H) then forms the start region for
motion 02. LIMITED then uses quasi-static analysis to "prove" that when A is at any
configuration in push#, (H), and a pure rotation of A is commanded, that all possible
motions of A result in sticking or breaking contact. Sticking and breaking contact
are called failure modes; there is a class of EDR plans which can be terminated in
failure when sticking or breaking contact are detected. EDR planning with failure
modes constitutes a robust subtheory of EDR. It is a subtheory because assuming
this kind of failure mode is a restrictive assumption to make planning tractable.
It is robust because sticking and breaking contact are easy to recognize, relatively
speaking, as failure modes by a run-time robot executor.

From the preimage point of view, failure modes are implemented simply as
different classes of termination predicates.

11.3. Specifying the Goal: Functional Descriptions

Recall our discussion of sticking as a termination condition in chapter II. Stick-
ing had the advantage of ensuring "good" behavior in the EDR region H. In
particular, it could be guaranteed that all motions would eventually terminate in
GuH, rendering the distinguishability of G vs. H a history-free decision. However,
in order for a sticking termination predicate to generate good EDR plans, it was in
fact necessary to ensure that the motion strategy has "good" behavior at the goal

a. as well. In particular, the commanded motion should stick at the goal.
In failure mode analysis, we have a similar situation. The purpose of motion 02

is to force all motions starting from push 1 (H) to terminate in sticking or breaking
contact. Clearly this is only useful if no motion from push 1 (G) can even possibly

terminate in sticking or breaking contact. This is the required "good" behavior at
the goal. Thus, in an EDR plan generated by failure mode axaalysis,
Fl. Under motion 02, all motions starting from pushe,(H) must terminate in a

I.

failure mode.

41 F2. No motion from pushs, (G) can possibly terminate in a failure mode.

F3. The goal is a fixed-point under motion 02.

LIMITED decides whether or not (Fl) is true. However, (F2) is given as input
-a: to LIMITED. We will now discuss how (F2) is specified. In the next section we

will describe algorithms for computing (Fl). (F3) may be decided using forward

projections; the actual condition we require is

Fe,(pusho, (G)) C G,

% A19604

A .

Swhich is implied by the fixed-point equation

Fe,(G) = G, (F3)

since of course push*, (G) is contained in G.

The goal state for gear meshing may be viewed purely geometrically. That is,
it may be viewed as a set in generalized configuration space. This view is useful
for computing the EDR regions. Alternatively, the goal may be specified through

. a functional description. For example, we might specify the goal as a difference
equation (DE). The intuition behind this difference equation formulation of the goal
is, "In the goal, any finite rotation of A results in an equal and opposite rotation of
B." More precisely, the difference equation specifies:

DE. Command any non-zero finite rotation Aal to A. In the goal, this results in a
- finite rotation of A by Aal and of B by -Aa 1 .2

* This difference equation captures the functional aspects of the gears in their
meshed state. Now, it is clear that this equation may be "differentialized." That
is, we consider it to be true for all non-zero displacements, no matter how small
If this is the case, then it is clear that breaking contact is in direct contradiction

. to the truth of the difference equation (DE). This is because if contact is broken,

then there exists some finite rotation of A that will not affect the orientation of B.
Similarly, sticking contradicts the truth of the difference equation, for if the gears
stick, then they are not properly meshed, i.e., we do not obtain equal and opposite

... rotations.
.. In LIMITED failure mode analysis, we view the goal state as a combined ge-

ometrical and functional specification. Here are the three ways of specifying the
functional aspects of the goal. The last, which decides questions about goal predi-
cates via the theory of real closed fields, is only of theoretical interest. The second
is a heuristic approximation to such an inference engine. The first is a more robust
solution with an engineering flavor. It places on the user the burden of ensuring
well-behaved qualitative behavior at the goal.

• A, Fuctonlof Ga

. 11.3.1 Specifying the Functional Aspects of the Goal

0.. Method 1. User input. In this method, it is the responsibility of the user to
ensure that (F2) is true. That is, the user must guarantee that failure modes cannot
occur at the goal. This, of course, is the easiest method. If the user guarantees that
(F2) holds, then it remains only for LIMITED to show (F1).

2 A and B are the same size. Clearly, this may be generalized to different pitch gears.A-,'

197

P".%

.,,,4,..,-, - .-. (.-. j.. .. ,-, e /{r. r ,, ,.. . . '". ... ,.,,..-, -., w, ,. .,". " . % .- w,_.., ' :', ,,.-,, . -, .. ,.% .,.% ..- ,, -.V'

* 11.3.2 Computational Methods for Functional Goal Specification

Method 2. Inference. If the user cannot guarantee that (F2) holds, it is possible
for LIMITED to make certain kinds of deductions to infer that (F2) is true.

How can such an inference mechanism work? We can view the difference equa-
tion as a kind of predicate on paths. This is similar to the termination predicate
with continuous history studied by [Mason]. In this model, when the predicate is
true, the path has been recognized as a member of a particular class--say, the goal
class, or the failure class. Similarly, sticking and breaking contact can be repre-
sented as path predicates. If p is a path in generalized configuration space, we wish
to prove that if the difference equation predicate (DE) is true of p, then

stick(p) V break(p)

is false. It is possible to write a semi-decision procedure for this question using
resolution refutation. I wrote a front-end to LIMITED which can decide this question
in special cases. goal, stick and break can be defined as predicates on paths. To
do this, we must view paths as lying in phase space, that is,

[0, oo). - T9.

hence p(t) is a pair representing the actual position of the robot and the actual net
force on (equivalently, velocity of) the robot at time t. stick(p) is defined to be true
if sticking occurs along p. break(p) is true if p ever breaks contact.

The inference system tries to find a contradiction among the set of formulas

{ goal(p), stick(p) V break(p) }.

If a contradiction is found, the system assumes that sticking or breaking contact
cannot occur in the goal, and (F2) has been established.

The quantified difference equation inference mechanism was implemented to
explore the feasibility of the approach. It is ad hoc, special-case, and incomplete. It
should not be viewed as a focus of this research, but more as an heuristic experiment
on the interaction of geometrical and functional goal specifications. While it is
possible to write a more complete inference engine, that is not the point of this
work. From a practical standpoint, the user input method for ensuring the validity
of (F2) is probably preferable.

Method 3. Second Order Theory of Real Closed Fields. Method 2 described a
heuristic implementation of a mechanism for inferring (F2) from a goal predicate.
We must now mention a complete, albeit strictly theoretical mechanism for this
inference. In particular, we describe a semi-decision procedure for deriving (F2)
from a goal predicate on semi-algebraic paths. First, we define an extension to the

198

0 % .Z . .-. ". -.-. -. ¢-. .q .. : -,'' .'

- ' -'' - "" , ".""". ,""... .'. . ..-. ..,.'.-".-.. .'.-".--.'-.'. - -.- .": . : .-." " "- ,-. -'"." ...". ,

theory of real closed fields. Next, we show it is semi-decidable. Finally, we note
that the specification of the goal predicate, above, may be encoded in this language.

Definition. A -semi-algebraic (s.a.) function is a univariate piecewise-polynomial
'.. function.

Definition. The Second Order Theory of Real Closed Fields (2RCF) is the first
order language with the following augmentations:

quantification over s.a. functions,
s.a. function application,

differentiation of s.a. functions.

While the first order theory can quantify only over variables, sentences in 2RCF
can universally and existentially quantify over functions, such as s.a. paths.

Definition. The Existential Second Order Theory of Real Closed Fields (X2RCF)
consists of all 2RCF sentences of the form (3p, Pk E R[t])F(p) where F(-) is a
2RCF predicate containing no quantified functions.

Theorem. X2RCF is recursively enumerable.
Proof. Given a formula (3pF(p)) where p E [xi,..., x,], enumerate s.a. multino-
mials p by degree. Test whether F(p) is true using the first order theory. 0

Our paths lie in real d-space where d is the dimension of T9.3

:. .-. Now, the questions we wish to decide are

(Vp E (R[t])d)goal(p) =* im 7r o p C OCO

or

(P ER[tl)d)goal(p) =--tc~)

The negations of both formulae are semi-decidable in X2RCF. If either negation
is true, then failure mode analysis will not work for this goal predicate. This gives
a theoretical means to decide when failure mode analysis is inapplicable. It is

-interesting only as an in-principle approach. It can be shown that X2RCF is at

,.%J. least non-elementary. It is probably undecidable.

Some of the greatest and most interesting unsolved problems in geometrical
robotics lie in the interaction of functional and geometrical descriptions of goals. In
particular, we would like to devise algorithms for computing a geometrical goal re-
gion given a functional description-for example, a quantified difference equation-

for the desired behavior in the goal state. Conversely, we would like to be able to

3Actually, d is the dimension of a real space in which the manifold T9 embeds.

199

%."

infer a functional description of the goal from its geometrical aspects. The latter
would be useful in automatically generating termination predicates to recognize the

goal.

11.4. Approximate Algorithms for Failure Mode Analysis

We now describe algorithms for deciding whether

F1. Under motion 02, all motions qtarting from pusho,(H) must terminate in a
failure mode.

Let us denote pusho1 (H) by Hi. These algorithms use time-indexed forward
projections to prove that under 02, all paths starting in H, eventually stick or break
contact. The algorithms are approximate, although conservative. That is, ii they

terminate then (Fl) is true. However, they may not terminate if (Fl) is false, and
they may miss cases where (Fl) is true. The accuracy of the algorithm increases

as the time steps for the time-indexed forward projections are taken to be finer. In
the 4D generalized configuration space for the gears, which is R2 x S 1 x S', these

time-steps correspond to the fineness of the slice resolution across the rotational

dimensions.

We will first describe a quite general algorithm for deciding (Fl). It is ap-
.. plicable wherever we can obtain a computational characterization of time-indexed

forward projections. Later, we will give a specialized algorithm in the generalized
configuration space for the gears, and show that it is in fact a special case of the
general algorithm.

11.4.1 A General Algorithm

The basic idea is to step along in time, simulating the motion, and determine
whether or not it breaks contact or sticks. Of course, we must simulate all possible

motions, using forward projections.

First we must develop some notation. Recall that for a planar set Hi, OH 1

denotes its obstacle edges. Here, we will use it to more generally to denote the
obstacle surfaces (as opposed to the free-space surfaces) bounding a set H, in gen-

• eralized configuration space. (In our case H1 , the input to the algorithin, is the

push-forward of motion e1).

Let x be a point in generalized configuration space. Then stickq(x) is true if

sticking is necessary at x under all control velocities Bec(v;) consistent with the

nominal commanded velocity v*. Let stickg(H1) denote all points x in H, where

sticko(x) holds.

200

% e %. %~- %$. 1 " 5 . 4 5

Now, assume some positive minimum modulus bound on the commanded ve-
• locity. We use F,at(') as the time-indexed forward projection operator (see [Erd-

mann]). So F,&t(HI) denotes the set of possible positions the robot can be at at
time At, having started in H1 at time t = 0.

Now, we are ready to give the general algorithm for deciding (Fl):

Algorithm Gen

1. Let F +- F*,t(H1).

2. Let H 2 +- OF - stick,2 (iF).
3. When H2 w , e have proven that all paths from H, must eventually stick or

break contact. Halt.
4. EBle, H1 +- H 2 . Goto (1).

Note that H, is permitted to be in free-space, although given the sticking push-
forward it will, in fact, always be on a generalized configuration space boundary.
Note that Gen is a semi-decision procedure. Clearly, if the algorithm halts, then
all paths originating in H, eventually break contact or stick. Fig. 67 illustrates the
algorithm. Suppose the H1 region is the edge e. Its forward projection after At
is the region U U g. The obstacle edges of the forward projection are e', f, and g.
Sticking must occur on f. Hence, H 2 is e' U g.

We now mention a basic property of forward projections that this algorithm
exploits. It is the property that forward projection commutes with union. In
particular, if we have

boundary free-space

H,= HB + HF

then

* Fe(H) = Fe(HB U HF) = Fe(HB) U Fo(HF).

This key property permits the algorithm to decompose the failure mode analysis
into essentially independent decision problems about the forward projections of the
free-space, sliding, and sticking regions in the push-forward.

.
11.4.2 A Specialized Algorithm

For failure-mode analysis, LIMITED employs an algorithm that is a spcriHi] rase
of the general algorithm above. The idea is that when commanding a purc ' ration
of A, the time-indexed forward projection across slices can be well approxim, it,,d by

201

-S

.A

t U g.
K tlk*.(.)

'm."-
,N,

Fig. 67. nllustration of the general algorithm. The start region H1 is the edge
e. Its forward projection after At is the region U U g. The obstacle edge of
the forward projection are e', f, and g. Sticking must occur on f. Hence, H2 is
e' Ug.

the differential forward projection of sec. 6. The differential forward projection is a
technique for propagating the forward projection across slices, when rotations of A
and B are permitted. Recall our notation for motions 6 and 92* 91 is a commanded

* pure translation of A, and may be viewed as unit vector v;, in the plane. 02 is a
-* commanded pure rotation of A, and may be viewed as a member of { +dal, -da, },

for positive and negative commanded rotations.

Differential and Propagated Forward Projections

Pure Translation. Forward projections must be propagated between slices

even when a pure translation is commanded, since a pure translation 01 ca n alter

the orientation of B, and hence the slice-value, through pushing. Recall h, ", the

differential forward projection is constructed for a pure translation 61 (,, 6).

202

i%

0P

. .

Let (X, y, al, a2) denote a configuration in the generalized configuration space for
the gears, R2 x S1 x S1. (x, y, a,) denotes a configuration of A. a2 denotes the
configuration of B. Hence, we regard the orientation of B (the "last" S1 in the
product) as J. Now, H, is a set in generalized configuration space. Let H1 01,02
denote a particular z-y slice of H1 for orientation al of A and a2 of B.

Motion 01 commands a pure translation of A. Now, for each edge in H1 11,42,

LIMITED performs a quasi-static analysis to determine the possible impending mo-
tions of A and B. That is, it determines which way(s) A and B can rotate. These

directions may be viewed as tangent vectors to the pure rotational dimensions of
generalized configuration space. The set of possible directions may be identified
with a set of pairs

{ -d 1 , 0, +da, } x { -da2,0, +da2 } (9)
% in the tangent space to (S 1 x S1). By performing this analysis for all edges, we

obtain a set of directions,
dFe, (H 1 1., ,2),

which is called the differential forward projection of Hi 114 02 under 01. It is assumed
that commanding 01 from region H1 It,, can result in any motion direction in this
set.

Suppose (a', a') is a slice taken in the direction of some tangent vector v in the
differential forward projection. For example, if v (+dal, -da 2), then a, = a, +e,
and a' = a 2 - C2 for some small positive scalars el and e2.

Now, the forward projection may be propagated to the adjacent slice (a', a')
as follows. An edge e, in H1 11 ,2 corresponds to the intersection of an algebraic
surface V in generalized configuration space with the "plane" R2 x { (al, Q2) }. V is
followed into (a,, a 2), and the forward projection of ei is taken to be the intersection
of V with the "plane" R2 x { (a,, a,) }. In this manner, we obtain a set of edges

{ e } in the new slice. The pure translational forward projection of these edges
under 0, is then computed within this slice, so the propagated forward projection is

*Fe, ({ e' }). This propagated forward projection is computed at a fixed orientation
of A and B. Ideally, the planner should decide whether the sliding characteristics
change along V while moving through rotation space. The rotational values which
are sliding-critical are discussed in the critical slice section, 6.3. 4 The propagated
forward projection increases in accuracy as the slices are taken closer together.

* Pure Rotations. Consider the problem of computing forward projections across

slices for a commanded pure rotation 02 E { +dal, -dal }. For simplicity, we first

4Detecting sliding critical orientation parameters along the algebraic surface V has not
been implemented in LIMITED. Thus the propagated forward projection may be larger
than it need be.

M 203

04

%~~~~~~. .\. V 0 .r , ll ',7~
%~

consider the case where H, consists of a single point. Let x be a point in the
plane, and (x, a 1, a2) be a configuration where A and B are in contact. Then the
differential forward projection of x under 02 will consist of vectors in the set of
eq. (9). The differential forward projection has the same structure as in the pure
translational case. It may be computed using quasi-static analysis. (see the next
subsection below).

Suppose for the sake of development that the differential forward projection
consists of eXactly one direction v, and that (al, a') is an adjacent slice in that
direction, as above. Now we ask, what is the propagated forward projection of x
into the adjacent slice, (a', a')? Well, it can be one of two things: either it is x,
or it is empty. The reason is that x-y position is invariant' under 82. Thus, an
upper bound on the propagated forward projection of H1 101,a2 into an adjacent
slice (a',a2) is found by simply "copying"" HI I1,02 into slice (a',at).

Now, consider the propagated forward projection of (x, al, a 2), under motion
92, into slice a',a'. It is simply the point (x,a',a'). There are three possible
qualitative outcomes:

1. x is inside a generalized configuration space obstacle in slice (a', a').
2. x is in free space in slice (a', a').
3. x is on the boundary of a generalized configuration space obstacle in slice

(at~, at)

Obviously, (2) implies that contact has been broken. (1) corresponds to a
physically impossible situation. Since the configuration (x, a', a 2) is physically
unattainable, this means that the commanded motion 82 must result in sticking
(no actual motion) before (a', a) can be reached. Now, if we have either outcome
(1) or (2) then we have proven that, under 02, any path for the robot starting at
(x, a1, a2) must stick (1) or break contact (2).

Suppose, however, we have outcome (3). This outcome is not inconsistent
with the negation of (Fl). That is, it has not yet been shown that any path from

* (x, al,a 2) will stick or break contact. In this case, in the new slice (a',a') we
again perform the quasi-static analysis and forward project again into yet another
slice. This process continues until either outcomes (1) or (2) are obtained.

More generally, the differential forward projection of (x, al, a 2) could consist
of more than one vector. In this case, each must be taken as a forward projection

S. direction, and in each direction we must show that outcomes (1) or (2) eventually
occur. That is, the computation above must performed for each direction predicted

5 See below for more on this assumption.
6 We use the awkward term "copying" instead of "translating", since while the latter is

precise mathematically it is confusing robotically.

204

NN-41.:.. ."-' ,"•"" -"• ,"-""""","". - ''-"-""""•"" - , . " - .- - " " -=,, " ' " ' .-,- ' a-''c

by the quasi-static analysis, and all directions must terminate in sticking or breaking
contact.

We have described how the failure mode analysis proceeds when the push-
forward H1 of the first motion 81 is simply a point. It remains to generalize the
discussion to the case where H1 is a region in generalized configuration space, rep-
resented by slices. We first introduce some notation. If CO denotes the generalized
configuration space obstacle for A due to B, then let CO~ai,a 2 denote the x-y slice
of CO at orientations (al, a 2). As usual, let 0 denote the obstacle edges of a set.
e is the slice resolution parameter. The input to this procedure is a stack Q of
X-y-slices of H 1. An entry in Q is a triple, consisting of an z-y slice HIa,,a 2, and

(a1, c2), the orientations at which the slice was computed.

Algorithm Spec

1. Do until Q = 0:
2. Pop the triple (HI il, &,a 2) off Q. Let H 2 -Hi lat,0 2 .

3. Let dF - dF,(H2).

4. For each v in dF do:

5. Let (i,)- + (al, a2).
.-.. 6. Compute COl,,;..

7. Let H 3 .- H 2fn COla ,I.
8. If H3 $0, puwh the triple (H3 , a',a') onto Q.

Note that this is a semi-decision procedure. This is the algorithm that is
. actually implemented in LIMITED. The key step is of course the iteration step (7),

which we think of as

"H2 +- H 2 n OCOI ,,;0 "
which is repeated "until H 2 is null." COI,, , is computed using the plane sweep

union algorithm, as is the intersection.

11.4.3 On the Invariance Assumption

We have assumed that x-y position of A is invariant under a commanded pure
rotation 02. That is, commanding a pure rotation cannot result in an induced
translation. On the other hand, we allow a commanded pure translation of A to
induce a rotation of B (but not of A). These assumptions are realistic if, for example,
the robot has gripped A by its center shaft, and the manipulator is very stiff in the

. x-y directions when commanding a pure rotation. In future work, relaxing this
asymmetry should be explored. See chapter VI for suggestions.

205

0N

L%

11.4.4 Quasi-Static Analysis

We now show how the quasi-static analysis is computed. It is quite simple.
We view the commanded velocity to A as w = (0,0, ±1). When the gears are in

* contact, this defines a moving constraint in the configuration space of B, which is a
one-dimensional space. Given a contact configuration, we compute the moment arm
in order to determine the direction of the constraint. The moment arm on B (resp.,
A) is simply the vector from B's (resp. A's) center of mass to the contact point in
real space. The contact point in real space can be recovered from the contact point

in configuration space.

Let r. and rb denote the moment arms on A and B, resp. Then the instan-
taneous velocity v. of the contact point on A, given w, is w x r.. B's direction of
impending motion is given by the sign of the expression

rb X 7r2V, = r b X 7r2 (w x r.),

where 7r2 denotes the projection of R' onto R2.

We now discuss recovery of the moment arms from the contact configuration.

Let COMA and COMB denote the centers of mass of A and B. In these exper-
iments, they are simply the centers of the gears. Suppose (x, al, a 2) is a contact
configuration. Then it lies on an algebraic surface in the generalized configuration
space R2 X S 1 x S1 . This surface is one of two types [Lozano-Prez]. Let -A denote
the reflection of A about its reference point. A type (A) surface is generated by an

edge e, of -A and a vertex bj of B. A type (B) surface is generated by a vertex
ai of -A and an edge eb of B. Each edge-vertex or vertex-edge pair is called the
generator pair of the constraint surface [Donald]. The edges and vertices of -A
(resp. B) rotate with al (resp., a2). An (al,a 2)-slice of the surface is found by
rotating its generators by (al, a 2), and taking their Minkowski sum. Hence the sur-
face may be viewed as a parameterized line-equation, by (al, a 2). The table below
gives the details for recovering the moment arms from the contact configuration,

contact surface in generalized configuration space, and centers of mass. We employ
the following notation. For an edge e or a vertex v, e(a) and v(a) respectively

. denote e and v rotated to orientation a. E denotes convolution (sometimes known

as the Minkowski sum). For two sets U and V, U E V v + u I u E U, v E V}.

Type Surface Moment arm on B Moment arm on A
Srb ra

A ea(al) (b,(a 2) bi(a 2) - COMB b,(a2) - x - CO.-A

B ai(ai) ED eb(a2) x - ai(al) - COMB -a,(ai) - COMA

*} 206

0N4%%

11.4.5 Stiction

What the Spec algorithm does is this: it tries to show that from any slice of
H1 , all paths that could possibly evolve from commanding a rotation of A either (1)
remain in the first slice, or (2) in some subsequent slice, stick or break contact. We
have described how (2) is detected. (1) is a form of stiction; the gears do not turn.
Note that (1) is a form of sticking behavior, since no motion occurs. Staying in
the same slice means that (al, a2) are fixed, and x and y are fixed a priori. Hence
events (1) or (2) satisfy (Fl). That is, (1) is also a form of sticking, and can be
detected at run-time by the termination predicate.

Now, suppose B sticks but A continues to turn? This type of stiction is also
no problem, since it corresponds to a differential motion (±dal, 0), which can be
predicted by the differential forward projection.

* p 11.4.6 Failures Outside the EDR Framework

We will momentarily digress to a practical question. It would appear that
for failure mode analysis to work, non-uniform stiction would be required in our
physical model of the gears. That is, it would seem that stiction would have to be
impossible in the goal, but possible in H1 . This is not the assumption made in the
geometrical EDR analysis and implementation. We now show that uniform stiction
is in fact not an impediment to failure mode analysis, either.

It is the responsibility of the user, or of some external inference system, to

ensure that (F2) holds. Suppose, however, that this inference is incorrect, and that
at run-time stiction does, in fact, occur in the goal, and that the gears jam. In
this case the run-time executive will signal failure, even though the geometrical goal
has been achieved. At first glance it appears that this is incorrect. However, when
we regard the goal as a combined geometrical and functional specification, it is
clear that this is actually the correct termination diagnosis. That is, even though
the geometrical goal has been achieved, stiction prevents the quantified difference

* equation (DE) on paths, goal(.), from being satisfied. Since something (specifically,
stiction) has prevented achievement of the functional goal, it is completely correct

.0*."a for the run-time executive to signal failure in this case. However, note that we regard
this as serendipitous failure detection, and not as inherent in the EDR framework.

0.1

711.4.7 Generalizations

The specialized algorithm Spec may be generalized. The properties it exploits
are (1) that certain degrees of freedom in C and J can be held fixed, while others
may be commanded, (2) that "slices" of CO can be computed, (3) set intersections

207

can be computed, and (4) differential motion across the non-fixed degrees of freedom
can be predicted using quasi-static analysis.

More precisely, the specialized algorithm generalizes to cases where we fix cer-
tain degrees of freedom C1 and Jf, command Cc, and permit Jc to vary (through

pushing). Hence Q is decomposed into

Cf X CcX JCX J

Be(v;) lies in the tangent space to Cc, and all motion lies in the subspace Cc x Jc.
Using quasi-static analysis, we predict the impending motion direction, v which lies
in the tangent space to Cc x Jc. If a is in Cc x Jc, let H, I denote a slice of H, at

(a). Thus C1 x Jf are the dimensions of the slice (like x, y in the gear example).
Then we let a' 4-- a + ev. Finally, the iteration step is

H3 +-H, n COI,,.
The rest of the algorithm goes through mutatis mutandis. This generalization is

somewhat theoretical, in that in practice the CO-slices, set intersections, and quasi-
static analysis may be difficult to compute for higher-dimensional problems.

%• 11.4.8 Discussion: General vs. Specialized Algorithm for
Failure-Mode Analysis

This starred subsection may be skipped at first reading. It contains a detailed proof.

The problem with implementing algorithm Gen directly is that arbitrary time-
indexed forward projections are difficult to compute. For this reason we introduced
a specialized algorithm for the gear planning. While algorithms Spec and Gen

appear quite different, in fact, Spec is simply a special case of Gen. The motivation

behind this viewpoint is to find a uniform framework for characterizing algorithms

for failure mode analysis. That is, algorithm Gen can be viewed as a highl-level
computational approach to failure mode analysis, while Spec is an implementation

of Gen in a restricted domain. We now discuss this view of the algorithms.

Recall the definition of sticke2 (.). We now define stick;,(R) to be all points
x in R such that any feasible path from x consistent with the control uncertainty

Bec(v;), eventually sticks.

We employ the following topological notions. U denotes the closure of a set U.
U' denotes its complement. i(U) denotes its interior. Uc denotes the complement

p of the closure.

Now, consider the following step of the Spec algorithm,
7. H3 +- H 2 flCOlc,,o,

where H2 = H 11,12" This step is equivalent to

"- 1208

"dU'

%I-1

H 3 +- H 2 i(COla;a,) - (10)

where the set difference operator - associates to the left. Now, the set

co.ep"dsH 2 n i(COjl,,.,;)

corresponds to all configurations (x, al, a2) in the planar slice (al,Ca2) such that

under 02, any path from (x,al,a 2) will stick before reaching (a',a') if x is kept

fixed. That is, it is configurations such that sticking will occur from (x, a,, a 2)

between (al,a2) and (a', a).

Below, we argue that the set H2 n i(COjl,,;) in algorithm Spec corresponds

in a quite precise fashion to sticko2(OF) in algorithm Gen. We see this as follows:

The following step of the Gen algorithm,7

2. H3 +- OF - sticke,(OF) .

is equivalent to

H3 - F - 7 - sticko2 (8F). (11)

Now, it is possible to modify Gen as follows. Let

F 2 = Fo2,At(Hl - stick;2 (HI)).

Then we can replace the assignment (11) by eq. (12) and still have Gen be correct:

H3 - -F 2 - V , (12)

We wish to compare the step (12) of the thus modified Gen with the step of

Spec given in eq. (10). In essence, we wish to show that eq. (10) is in some sense a
"conservative" approximation to eq. (12), and hence conclude that algorithm Spec

is simply a special case of algorithm Gen.

We must introduce some notation to compare eqs. (10) and (12). For a set V

A, in 2, we denote the set

*"V X {(al,a2)}

by

V x (a , a2).
4.

T We have lexicographically substituted H3 for H2 throughout algorithm Gen to facilitate

the comparison with Spec.
..

- 209

..

%.. 1W N .W N > -* . 1 44 r -. ., "," . , %

, .

Now, H, is a subset of Q. A slice of it H1 [ri, 2 lies in the "plane" R2 x (al, a 2).

Let us denote its projection into W2 by 7r2 H1 I, l,c. Finally, for an arbitrary set U
in generalized configuration space, let UJ,,cr 2 denote an (al, a 2)-slice of it, that is,

"UJ,,,= U1n (R2 x (al,a 2)).

Claim: Eq. (10) is a conservative approximation to eq. (12) in each slice.
Proof First, we obviously have

COl,; C Co. (13)
Next, we need only show that

Fe,At (HI1-,,C) Cr 2(H 1,,,c,) x (a',a') (14)

and

Hi 10,0,2 f nr 2 (i(COIa, cr),,)) x (al,a2) c stick;(H 1 0'1 ,a2). (15)

Eqs. (14) and (15) are definitional. Now, suppose that configuration z E
i(CO[,,,,,a,2). Then clearly z Fla,,cr2. Hence we have

H3,Gen I (F9 2 ,At(Hi - stick;2(Hi))) O

n n
H,sec = 2 rH2 x (a, a')- i(COIo,,,) - COi,,

00

Note that as a consequence, we may expect that Spec is less likely than Gen
to terminate.

0.1

210

04%

%~5

12. Weak EDR Theory, Strategy Equivalence, and the
Linking Condition

12.1. Reachability and Recognizability Diagrams

We now introduce a type of diagram which permits notation of reachability
and recognizability. These diagrams are a powerful tool for compactly expressing
motion strategies. They greatly aid the development of concise and readable proofs.

Suppose we are given a start region R, a goal G, and a motion 0. We construct
the EDR region H. Then under sticking termination, all motions from R will
terminate in G or H. That is, the push-forward of the motion 0 from R is contained

in GUH:

pushg(Fe(R)) C G U H. (16)

Whenever (16) is true, we write this by the following reachability diagram,

9 G
'e /

R (17)

9 H.

Suppose that G and H are distinguishable using sensors. Then 0 is an EDR
strategy from R, and we have

R = P8,R({ G,H }). (18)

Whenever (18) holds, we write Lhis by the following recognizability diagram,

G

R (19)

*H.

The reachability diagram (17) is an equivalent notation for the reachability
termination condition (16). The recognizability diagram (19) is equivalent nota-
tion for the recognizability termination condition (18). Single arrows (--) denote

reachability whereas double arrows (==e) denote recognizability. If and only if (16)
is true, we say that the correspondingly reachability diagram (17) holds. If and
only if (18) is true, we say that the correspondingly recognizability diagram (19)
holds. A diagram is said to hold tautologously when it is true without additional
conditions or suppositions.

211

6e

The nice thing about sticking termination, as discussed in chapter II, is the
following property:

Theorem: Let R be a start region, 0 a motion, and G a goal. Construct the EDR
region H for R, O, and G. Then with sticking termination the reachability diagram
(17) holds tautologously.

Now, in diagrams (17) and (19) we have labeled all the arrows. In the future,
when this would clutter the diagrams, we will label only the top arrow and adopt
the convention that all arrows aligned below it have the same label.

12.2. More General Push-Forwards

Hence the chief advantage with sticking termination is that (17) is always
true. In this chapter, we will generally assume that either sticking termination is
employed, or, if more general termination predicates are allowed, then the truth of
the reachability diagram (17) can be determined through restrictions on time and

history, as described in chap. II. We now digress briefly, however, to describe how
this discussion generalizes for more general termination predicates.

-. In an appendix, we define a more general push-forward, F..(R), which de-
notes all configurations at which the motion 0 can terminate given more general
termination predicates. When more general termination predicates than sticking
are considered, then the condition (16) must be replaced by

F.O(R) C G u H. (20)

When (20) holds, we may then write the equivalent reachability diagram (17).

However, with more general termination conditions, (17) does not hold tau-
tologously. For example, with time-termination and the approximate push-forward
described in sec. 10.3, a motion could (a priori) terminate without sticking yet
within the weak preimage. In such cases, it must be the responsibility of the plan-

0 ner to verify that all motions terminate in G U H.

The first difference between the sticking push-forward push(.) and the general
push-forward F.(-) is that F.(.) depends on the start region for the motion, while
push(.) does not. That is, F.(.) depends on history (and possibly time) whereas

*O push(.) does not.
Now, a motion sequence is a reachability or recognizability diagram of the form:

R-PR -1 -- '"- -R 1 O4Ro = G. (21)

The second chief difference between the a priori sticking push-forward push(.)
and the general push-forward F.(.) is that the action of push(.) on a motion sequence

212
t.

01

(21) is functorial, while F.(.) is not. The non-functoriality of F.(.) is a consequence
of its history dependence.

12.3. Weak EDR Theory

We now make the following natural refinement of our termination predicate.
Suppose the termination predicate is given some finite collection of goals { Gg } in
a distinguishable union. Then the goals { G3 } are of course partially ordered by
containment. We assume that the termination predicate returns the smallest goal
(with respect to containment) if at termination time the actual configuration of the

robot is known to lie within two or more goals. (A technical point: if two or more
goals overlap, we augment the collection with a new goal which is their intersection).

Now, whenever the reachability diagram (17) holds (which it always does with
sticking termination), then we have the following:

R = PO,R({ G, H, G U H}). (22)

This is trivial to show; on termination, the termination predicate will return G or
H if it can, otherwise it will return G U H. In particular, it will return G or H in
preference to G U H.

Thus we can write the following recognizability diagram, which is equivalent
to (22):

oG

R H (23)

• GuH.
-.. (23) is called the Weak EDR Recognizability Diagram for G, H, and 9. (19)

is called the Strong EDR Recognizability Diagram. (17) is called the Reachability

Diagram.
6

Theorem: Let R be a start region, 9 a motion, and G a goal. Construct the EDR
region H for R, 0, and G. Then with sticking termination the weak EDR diagram

-; (23) holds tautologously.

Up to now, in previous chapters, we have described the strong EDR theory.
This section has introduced the weak EDR theory. It may not appear useful at

first glance. However, in the next section we will see that these one-step weak EDR
strategies-which are in effect always available-may under certain conditions be
chained together to make a multi-step plan very like a strong EDR strategy.

- 4.

.. 213

% %e

The key idea behind the weak EDR theory is: given a collection of goals { G3 }
(possibly including H), we consider all unions of the subcollections to get some
measure of weakest recognizability.

12.4. Strategy Equivalence

A one-step weak EDR strategy is not very interesting. In particular, we can
always obtain one! Surprisingly, it is possible to define a way of coupling two weak,
one-step EDR strategies together to make a two step strategy which has many of
the characteristics of strong EDR. In particular, we will develop a way of making
precise the idea that the two weak EDR steps can be combined to make a two-step
strategy that is "equivalent" to a one-step strong EDR strategy.

Suppose the commanded motions of the two weak EDR steps are 01 and 02.

The essence of this "equivalence" lies in disambiguating a previous motion's (0 's)
result without destroying the goal state.

Now, let R be the start region, and G the goal as usual. Assume without loss
of generality that G is contained within the forward projection of R under 01 (see
sec. 7.3 for justification). Let

R I = R n PO,,Fei(R)(G). (24)

Now, we have the recognizability diagrams

R, G G

R - R H pushg, (G U H) = H',. % %(25)

HuG H'uG

recog 9 recog 92

where H' is the EDR region for motion 02.

The question is, how can we link together motions 01 and 02 into a two-step
EDR strategy? The first condition we require of such a two-step strategy is as fol-
lows: once 01 has reached G, 02 should preserve this state and "add" recognizability.
That is, G is a "fixed-point" under 02. This is given by the following diagram:

Definition: The fixed-point diagram is

pushq,(G) = G. (26)

the fixed-point diagram (26) holds, (25) admits the following reachability
and recognizab:ity diagram:

214

.4%

ot pusho, (G) G C

R (27)

push, (H).

It remains to ensure that good EDR behavior occurs when 82 is executed from
push 1 (H). Now, think of 91 * 02 as the composite strategy formed by executing
motion 01 followed by 02. We wish to find additional conditions which, together
with (25), will admit both the fixed-point diagram (26) and a strong EDR diagram,

R (28)

01 *92 H",

for some H" (see below). Together with the weak EDR diagram (25) (which is
tautologously true for sticking termination), the additional conditions below, which
we will call the linking conditions, are necessary and sufficient for defining an equiv-
alence between two "linked" weak EDR strategies and a single-step strong EDR
strategy, whose recognizability diagram is given by (19), (substituting 01 for 9).

. Henceforth, let - 81.

Definition: If the fixed-point diagram (26) holds and if (25) admits a strong EDR
diagram (28) in which

.mH" = {H'}, (29)

then the motion strategy 91 * 02 is said to be strongly equivalent to a strong EDR
strategy with recognizability diagram (19).

* An example of such a strategy is the two-step peg-in-hole insertion plan with
model error, figs. 4-66.

'r -Definition: If the fixed-point diagram (26) holds and if (25) admits a strong EDR
diagram (28) in which

thenH" ={H',H'uG}, (30)

then the motion strategy 01 * 02 is said to be weakly equivalent to a strong EDR
strategy with recognizability diagram (19).

215

04
.€ . .,e.A.

; S " f "'" *-"-'"'L'°"I m, m ~ ~: .. %, . ' , ',q'. "-n.' ' _ ,"
'':

= e- . , . € ",-," " ', ," .. . '

Note that we define (strong or weak) equivalence using (19) with 69 01,

not with 0 = 01 * 02. The reason for this is as follows. If 01 * 02 satisfies the weak
equivalence condition (30) and the fixed-point diagram (26), then after termination,
we are assured that the outcome of 01 has been completely diagnosed. That is,
the run-time executor knows whether or not 01 terminated in success or failure.

However, it is not necessarily true that the outcome of 02 is completely diagnosed.
This occurs in the worst case, if H' U G is recognizably attained. We discuss this
point in some detail below.

The following gives an implicit definition of linking conditions:

Definition: Let H" be chosen for either strong or weak equivalence, as in (29)
or (30). The linking conditions are necessary and sufficient conditions for (25) to
admit a fixed-point diagram (26) and a strong EDR diagram (28).

It remains to show, of course, that linking conditions exist for strong or weak
equivalence. We will momentarily postpone the derivation of the linking conditions
in order to describe what the linking should effect.

Once "linked," two one-step weak EDR plans should admit the strong EDR
diagram (28). The claim is that (28) is in some sense "equivalent" to the strong
EDR diagram (19). How is this possible?

(19) indicates that the run-time executor can disambiguate the success or failure

of motion 01. The same is true of strategy 01 * 62 in (28). Here are the possible
results of executing 01 * 02 when the steps 91 and 02 are properly "linked:"

1. G is achieved and recognized at termination. In this case, either (i) 01 achieved
G and the run-time executive may not have recognized it, but 02 disambiguated
the result while still terminating within G. Alternatively, (ii) 01 failed, reaching

H, and 62 subsequently achieved G from H.
2. H' is achieved and recognized at termination. In this case, 01 is known to have

failed, and the robot is known to be outside G.

(1) and (2) are the only outcomes given strong equivalence. With weak equivalence,

a third outcome in also possible:

4 3. G U H' is achieved and recognized at termination. In this case, 01 is known to

have failed.

Thus the key is that 02 does not corrupt the goal state; that is, G is a fixed

point under 02. The desirability of outcomes (1) and (2) are clear. One might ask,
what good is weak equivalence? Why would anyone want outcome (3)? The answer

216

-,.

..- .- .o .- . .-, , ,,,"...'..............'............................. . "'

is: in one-step strong EDR (19), the run-time executor can (a) disambiguate the
result of motion 01, and (b) in case of failure, know that the robot is not in the
goal. In weak equivalence, we have (a) but not (b). That is, in outcome (3), we
have completely diagnosed the result of motion 01, although in the process, we may
have accidentally moved into the goal. That is, we may indicate failure when we
have, in fact, succeeded. However, we will never indicate success unless it is certain.
In short, when linked, 01 * 02 is "conservative" about declaring success.

12.5. The Linking Conditions

We now derive the linking conditions. Let

Fol = F,(R)

R, = R n Pe,.F., (G)

pushe, = pusho, (G U H)

F 2 = Fo,(pushg,)

R 2 = pushq, n P02 ,F.2 (G).

The overloading notation for push, is symmetric with that for preimages and
forward projections: both the map and its image are denoted by the same symbol.
The discussion of linking conditions assumes sticking termination. However, the
derivation goes through mutatiu mutandis for more general termination conditions,
if we let'

- push, = F., (R)
It remains, however, to extend the linking-conditions for time-indexed forward pro-
jections.

*. We now demonstrate our claim that linking conditions exist.
*b Definition: The condition (LO) is

G n pusho, C R2 . (LO)

"-' Here is the motivation behind (LO). (LO) says that whenever motion 81 ter-
minates in the goal G, then the state is inside the preimage of G under the next
motion 02. The intent of (LO) is to admit the fixed-point diagram (26).

Claim: (LO) implies the fed-point diagram (26).
.. Proof The preimage equation for (26) is

1F. is defined in the appendix. See also sec. 12.2.
5j

217

d*l

"zJ

P0,,push,(G)(G) = pushe, (G).

This preimage is taken with respect to a smaller start region than R 2 . [

Note however that the converse is false. (LO) is stronger than the fixed-point
diagram (26), since the preimage R 2 is taken with respect to the entire forward
projection under 02.

Claim: Linking conditions exist, and, in particular, (LO) is a linking condition.
Proof: Suppose (LO) holds. This yields the following reachability and recognizability
diagram:

linking condition (LO)
#e2

R1 -- G D Gfnpusho, C R 2 = R2 G G

R-R -R - H D Hfnpushe, C push 1 D push 9 1-R 2 = H'

__H'UG

reachability recognizability

(31)
To see that diagram (31) demonstrates weak equivalence, we use a technique

like "diagram chasing" (see, eg., [Hungerford]). Assume (LO) holds. Starting from
R 1, 01 effects a motion reaching G. This motion in fact terminates in G n push 1 .
Since by (LO) G n push 1 is within R2, 02 then effects recognizable termination in
G.

On the other hand, if the motion begins in R - R1, then 01 effects a motion
reaching either G or H. If G is reached, then 02 will eventually effect recognizable
termination in G, by the argument immediately above. If H has been reached, then
the motion 01 will in fact terminate at some point z in H fn push 1 . Then there are

*two cases. Case (i): z E R2. Since the preimage R2 is constructed with respect
to the entire forward projection of push 1 , motion 02 will next effect recognizable
termination in G. Case (ii): z R 2. In this case, motion 02 will effect recognizable

N termination in one of { G, H, H' U G }.
We conclude the process by "forgetting" all the intermediate steps, and renam-

ing them to 01 * 02. First, observe that the fixed-point diagram (26) holds. Next, to
see that (31) admits an EDR diagram (28) in which (30) holds, we remember only
the start region R and the "results" G, H', and H' U G. Diagram chasing shows
that these may be joined with recognizability arrows as in (28).

Thus the diagram (31) demonstrates weak equivalence. For strong equivalence,
we remove H' U G as an outcome of 02. Note that the linking condition is not a

218

V

V.%

tautology. However, note that all the other subset relations and the equality in (31)
are tautologous. 0

In the future, we will leave similar diagram-chasing arguments to the reader.
We may thus conclude that

Theorem: The linking condition (LO) is a necessary and sufficient condition for
weak equivalence of 01 * 02 to a one-step strong EDR strategy.

Proof: The claims above have demonstrated sufficiency. It remains to show (LO) is

r. necessary. Suppose (LO) is false, but (26) still holds. (This is the interesting case,
for if (26) does not hold, then equivalence cannot possibly follow). (26) says that
when the motion is known to start within pushq, (G), then it can be guaranteed to

terminate recognizably in G. The antecedent is a precondition for success of the
motion. After 01, however, this precondition may be false: even if 01 reaches G,
it is only known to have reached push,9 . In particular, (26) says nothing about
what happens when 02 is executed from H. (LO), on the other hand, says that

termination in G can be recognized no matter where 02 originates in push 1 . 0

Now, we can derive some equivalent linking conditions that are somewhat sim-
pler in form. Let

R;= R 2fnG.

Definition: The linking conditions (Li) and (L2) are

Gfnpushe, = R (L)
H n pushq1 = pushe - R; (L2)

-V These linking conditions admit the reachability and recognizability diagram

linking conditions (L), (L2)

R* R -* G D Gfnpush, = R;

R-R 1 H D Hnpushq, = pushe1 -R = H' (32)

__________H'U G

reachability recognizability

Comments: Let

Ph2 - Pe2,F, (push, (G)) (G),

219

%"-

so R 2 = push*, n Ps,. Note that (L2) is not tautologous, for we can have x E G,
x Ps2 if (L1) is false. Therefore x E pushet - R and z pusher n H.

Lemma. The linking conditions (Li) and (L2) are equivalent.

Proof. (LI) implies (L). Suppose (Li). Let x E H n pushe,. x E R; implies
z E G. Therefore x H is a contradiction. Therefore x E pushe, - R;.

Now let z E pushe, -- R;. Therefore x G npush 1 n Pe2 . Therefore x G
or x Pe2 . In the former case, x E H. In the latter, suppose that x E pushe1 and
" E G and x O P02. But by (L1), x E G n pushe, implies z E Pe,, a contradiction.

(Li) if (L2). Let x E G n pushe1 . Show x E R;. We need only show that
x E Ph2 . Now, x g Pe, implies x E H n push$,, a contradiction. Now let x E R;.
Therefore, x E G f push 1 . 03

Lemma: The linking conditions (LO) and (L1) are equivalent.

Proof. (LO) implies (LI). Suppose (LO), i.e., G n pusho, C R 2. Show G n push#, -

; = GnR 2.

Let x E G n push 1 . Now, (LO) implies that x E R 2 . Therefore x E G and
x E R 2 . Hence x E R;.

Let x E R;. Therefore x E G n R 2 . Hence X E G nl pusher n P02, i.e., x E
G nl push 1 .

(LO) if (LI) is trivial. 5

Theorem: The following linking conditions are equivalent:

G n push 1 C R 2 (LO)
G n pushe, = R2 (L1)
H nl push, = pusho, - R; (L2)

* 12.6. Beyond the Fixed-Point Restriction

In the discussion above, we have required that the goal was a fixed point under
motion 02. We now discuss how to relax this restriction. In particular, it is possible
to extend the notions of strategy equivalence, and the linking conditions, to the

.* case where a subgoal G, is in fact the preimage of the actual, or final goal, Go,
under 02. Thus G1 is no longer the fixed point of 02, but rather the preimage of

Go. This section is somewhat technical and may be skipped at first reading. We
regard relaxing the fixed-point restriction as a digression. The subsequent material
may be understood even if this section is omitted, however, the reader may wish to
bear in mind that such a generalization does, in fact, exist.

a 220

_%K%

We consider the situation where from R, 01 may attain Go or G1 , where "G, =

Pe,(Go)." However, G may not be distinguishable from Go under 81. Thus the
three reachability results of 91 are Go, G1, or H1 , where H, is the EDR region for
01 when we view the goal as Go U G1.

To define strategy equivalence in the non-fixed-point case, we first generalize
pi. the fixed-point diagram (26) as follows.

Definition: The generalized fixed-point diagram is

pushe,(GoUG 1) 4= Go. (33)

Next, we modify the definitions of strategy equivalence and the linking con-
ditions to require that the generalized fixed-point diagram (33) hold in place of
the old fixed-point diagram (26). To avoid confusion, we will call (26) the simple
fixed-point condition.

Now, we let

R, = RnlP,,F, (Go UO)
push9 , = F.,(R)

Fe, = Fe,(pushe ,)

PO, = Pe2,F,, (Go)

R 2 = pushe, n Pe2
Next, define

R. =GinR2 , (= 0,1)

It is possible to generalize the definition of R and the linking conditions to more
than two subgoals { Gi }. We would do this by writing (Vj) in place of (j = 0, 1).

We already know one linking condition:

P02 D Go u G1 . (L3)

In addition, we can derive the following linking conditions. Recall H, is the
EDR region for motion 01, viewing the goal of 01 as Go U G1 .

pushe, n Gj = R' (Vj) (LI')
push,, nf H, = pushe, -- UjR. (L2')

221

r q

Comments: Clearly we have (LI') implies (L2'). However I have not been able
to prove the converse true. I suspect it is false, since Go may intersect G1, and H 2 ,
the EDR region for 02, may intersect G 1, etc.

Finally, note that all three linking - aditions, (LI', L2', L3) are required for
the composition 01 * 02 to admit an equivalent strong EDR diagram. This points
out the chief theoretical advantage of strategy equivalence with the simple fixed-
point condition (26). With the simple fixed-point condition, the linking conditions
(LO), (Li) and (L2) were found to be equivalent. With the generalized fixed point
condition (33), not only do the corresponding linking conditions (LI') and (L2')
appear to be inequivalent, but we also require the additional independent condi-
tion (L3). While it is gratifying that our key concept--composing two weak EDR
strategies via linking conditions to admit strategy equivalence-in fact generalized
to the non-fixed-point case, the generalization, unfortunately, is correspondingly
more complicated.

12.7. What Good is Weak Equivalence?

We now pose the following question. Why is

R, G

R-R 1 H' (34)

GuHl
any better than

RG

R - R H (35)

* GuH

(35) is simply the weak EDR diagram for motion 01. It always holds (given the
reachability diagram). (34) is the equivalent recognizability diagram for 01 *02 when
a linking condition is satisfied. That is, (34) is obtained through weak equivalence.

- Why is (34) stronger than (35), and would one prefer (34) to (35)?
Here is our answer. push01 (G) is a fixed-point of 02. Therefore, nothing is

"lost" by 02. 02 serves to disambiguate the result of 01, without polluting the state.
Second, note that 01 * 02 is "conservative" about declaring success. It is as if we
used 0.2 to convert the reachability diagram

222

4

R' --.

R, Og R1 -nG

R- R "---- H
" into the recognizability diagram

(37)
R - R, "Lose, but knowing 01 did not achieve G."

More precisely, the "lose" states are
H' ;t 01 did not achieve G, and now the robot is outside of G.
G U H' ; 01 did not achieve G, and now we might be in H', but can't guarantee

that we're outside of G.

On the other hand (35), achieving G U H after 91 only tells us that we started
in R - R 1 , and does not tell us the result of motion 01.

* - 12.8. Application: Failure Mode Analysis in the Gear Experiment

We now discuss how the failure mode analysis used to generate motion 82 in
the gear domain may be viewed using the weak EDR theory.

In the gear meshing plan, 0 is a pure translation, and 02 is a pure rotation.
The goal is a fixed point under 92. Consider (32). In the gear plan, the reachability
arc

/ (38)
R - R1

is present, but the arc

G
(39)

push91 - 2

is not. That is, it is possible to serendipitously achieve the goal under translationK: but not rotation. The linking conditions are satisfied. Now, is the outcome G U H'
possible? Failure mode analysis yields the answer: No. In this case, 01 * 92 is

*. 1 strongly equivalent to a one-step strong EDR strategy

V.
R-R = H'.

The full reachability and recognizability diagram for the gear plan is given by

223

MI

J04I

R-, 1. linking conditions (LI), (L2)

:_. R, --, G D "Gnpushe, = PR = G

R - H D Hf npush 1 = push*, -R H' (40)

reachability recognizability

12.9. Discussion and Review

We now discuss the relationship between push-forward algorithms, failure-mode

analysis, and the weak EDR theory. Recall the diagram (32):

linking conditions (LI), (L2)

R 1 04 G D 'Gfpush., = R; 7. G

R-R - H D Hfnpushe, = push 9 1-R = H' (41)

d H'uG

reachability recognizability 82

(41) is the full reachability and recognizability diagram for weak equivalence.
The arrows (a)-(d) all correspond to motion 02; we have labeled them so as to be
able to refer to them in the discussion.

Failure Mode Analysis. The reachability and recognizability diagram for
failure mode analysis (40) is found by deleting arcs (b) and (d) from (41). In

LIMITED, arc (a) is essentially a user input2 (see sec. 11.3). The failure mode
[•analysis algorithms Spec and Gen decide arc (c). Thus, in sec. 11.3, (c) corresponds

J. to (Fl). Failure mode analysis links a weak EDR strategy 01 followed by a strong
EDR strategy 02. (a) warrants that G is a fixed-point under 02. (b) ensures that

failure is preserved under 02: no serendipitous goal achievement from H is possible.
Thus such plans are pure disambiguation strategies.

Push-Forward Algorithms. Plans found by push-forward algorithms such as
Multi admit a diagram from (41) containing arcs (a), (b), and (c), but not containing

2 Although we have discussed methods for inferring (a) computationally, this is really a
direction for future work rather than a focus of this research.

.'
224

04,%
6N1.

(d). The arc (b) (which is shown in detail in eq. (39)) permits serendipitous goal
achievement from H under 82. The absence of arc (d) yields strong equivalence.
Again, push-forward algorithms link a weak EDR strategy followed by a strong one.
They differ from failure mode analysis plans in that the arc (b) is permissible, and

'* (a) is not a user input. The peg-in-hole plan with model error (figs. 4-66) is an
example of such a plan.

2-Step Weak EDR. A plan admitting the diagram (41) with all four arcs
(a)-(d) demonstrates weak equivalence. It is formed by linking together two weak
EDR strategies into a 2-Step plan. We have discussed the semantics of such plans
above. The key differences between 2-step weak EDR plans and push-forward or
failure-mode plans are (1) the existence of arc (d), and (2) the linking of 2 weak (as
opposed to a weak and a strong) EDR strategies.

In all cases, note that the linking conditions are required. Thus the linking con-
ditions have somewhat surprisingly turned out to be the underlying characterization

for multi-step EDR strategies. That is, since they are necessary and sufficient con-
ditions for constructing multi-step EDR plans, the linking conditions may, in fact,
be taken as the definition of multi-step EDR strategies.

Hence in considering LIMITED's techniques for multi-step strategy generation,
we find that both failure model analysis and push-forward algorithms are essentially

special cases of the Weak EDR theory. This is summarized in the table below:

Method Arcs in (41) Strategy Type Comments

Failure Mode Analysis a,c weak*strong Pure Disambiguation.

(a) is user input, (c) is computed.

[Pusl-Forwards a,b,c weak*strong (b) permits serendipitous goal achievement.

Weak EDR a,b,c,d weak*weak 2-Step Weak EDR.
4.
4'.
0

12.9.1 Algebraic Considerations

,O Let us pause and review the key points in this development. Weak EDR the-
ory, strategy equivalence, and the linking conditions were introduced as a unifying

framework for planning multi-step strategies.

1. The linking conditions are necessary and sufficient criteria for admitting the
composition of two weak EDR strategies 01 W and 0 2 into a two-step strategy which

225

.. ... 7 ,%,

.4,

is weakly equivalent to a one-step strong EDR strategy from 01. We may write this

as

W01w*02 -_ 01!- (42)

2. The linking conditions are necessary and sufficient criteria for admitting the
composition of a weak EDR strategy 01w and a strong EDR strategy 02" into a

two-step strategy which is strongly equivalent to a one-step strong EDR strategy
from 01. We may write this as

1W s 1f (43)

3. The gear plan is a special case of (2). In particular:

4. Failure mode analysis is a special case of satisfying the linking conditions to
render a two-step EDR strategy strongly equivalent to a one-step strong EDR strat-
egy.

5. Multi-step strategies may also be planned, by repeatedly pushing forward. This
was the gist of algorithm Multi in the beginning of this chapter. Multi may be viewed .

as chaining together weak EDR strategies followed by a strong EDR strategy. Multi
is also essentially a special case of (2), with the goal fixed-point condition relaxed.3

We can view the set all strategies 4 as a monoid under the composition oper-

ation *. The generators of the monoid are { 9 I U { 9,s J. Strategy equivalence is a
way of defining certain relations between products of these generators. When the
linking conditions are satisfied, then these relations take the form of (42) for weak
equivalence or (43) for strong equivalence.

However, we cannot directly define a new monoid by taking the quotient of 4
by these relations. This is because the relations are not always true, that is, they
only hold when the linking conditions are satisfied. We can remedy this by viewing

as "a groupoid without inverses." We call such a structure a monoidoid. That is,

the operation * turns out to satisfy properties that look very much like the axioms

for a monoid. These are called the monoidoid properties of *. The only difference
from the properties of a monoid is that 01 * 02 is not defined for every pair of classes,

but only for those pairs 01, 02 for which the linking conditions hold.

3Relaxing this restriction was discussed in the section "Beyond the Fixed Point Restric-
tion," above.

226

% %
. . . .".. . .".., . , . . - .. -. ;% -- ,, .---.-. . Y

IV. Planning Sensing and Motion for a Mobile Robot
'S

We now consider an application of the EDR theory to planning sensing and

motion for a mobile robot amidst partially-known obstacles. A partial "map" of
the environment is represented using generalized configuration space. We assume
that the robot has a depth sensor which it can use to interrogate the environment.
We call this process active sensing.

Applying EDR to the mobile robot domain yields certain insights into the struc-
ture of the EDR theory. Conversely, this chapter obtains a technique for planning

motions and active sensing for a mobile robot in a partially known environment.
This technique provides a principled approach to motion planning with active sens-
ing. It shows how to incorporate a more fine-grained model of sensing into the EDR

planning framework.

Much work remains to be done. In particular, the EDR framework for ac-
tive sensing is still fairly theoretical. Mobile robot environments are often highly
unstructured [Brooks, 85], and representing this geometric uncertainty using gener-
alized configuration space presents a non-trivial problem. Furthermore, it may be

* impractical to model more general vision or sonar sensors without further enhance-
ments to the EDR theory. More study is required; hopefully this theory of EDR
planning with active sensing can provide a starting point.

S.

-b

F

5e,

227

.W

"J ;". , " . ." ." . * .-'. ,' . -" . "5. "-. ".*.-.'-,." ." ""' " " .'. . " "" .. - .' " ' -- " - : - ." - . "."-'' S:...''

13. Planning Sensing and Motion for a Mobile Robot

Model error is a key theme in this thesis. One important domain in which there
is uncertainty in the geometry of the environment arises in planning motions for a
mobile robot. Typically, such a robot must plan motions amidst partially known
obstacles. Since this partial knowledge can be represented as model error in our
generalized configuration space framework, it is natural to consider EDR planning
in this domain.

The use of sensing in [LMT] plans might be characterized as "passive." In each
step of the plan, a nominal applied force is commanded, and the position and force
sensors are monitored until some termination conditions are satisfied. At this time
a new motion is selected, and so forth. This model of sensing and action arises quite
naturally in developing compliant motion plans for assemblies.

A mobile robot plan, however, is typically not limited to motion commands.
The vision or sonar sensors on a mobile robot may be pointed in a direction and
information gathered about the environment. This is a more fine-grained model
of sensing than is currently available within the EDR planning framework. In this
chapter, our goal is to extend the EDR framework to planning both motion and
sensing actions. We develop the extension in the mobile robot domain, although
it is applicable to any domain where the robot has a choice of sensing modalities
and directions to interrogate. The basic difference is that in the [LMT] framework,

motion and sensing are inextricable. In the active sensing framework described
here, we assume it is possible to sense without moving. In particular, we assume
the following model of sensing and motion:

Motions of the mobile robot are modeled in the standard way, using generalized

configuration space with sensing and control error:
. The mobile robot is represented by a polygon moving with three degrees of

freedom x, y, 0 in the plane. There are partially known obstacles in the plane,

_and they are represented using the space of geometric variations J. Q is of
course the product of the Euclidean group acting on the plane, and J. Pushing

* •of the obstacles across J can also be represented. The mobile robot has a
priori position sensing of accuracy fep, control accuracy of eec, and force-sensing
accuracy of e,,. We assume that the robot can slide on surfaces as subject to
the coefficient of friction i.

r Next, we assume the following additional sensing capability:
_ The robot has a sensor similar to a laser range-finder. It can be pointed in

any direction 0 to ascertain, approximately, the distance to an obstacle in
that direction. The sensor also gives the approximate surface normal of the
obstacle patch. The aim of the sensor is inaccurate; however, it is bounded
by a cone. The aiming inaccuracy cone is defined by Cairn. The error in the

228

rAt

distance measurement by the sensor is bounded by Edist. The error in normal
measurement is bounded by E,,.

The sensor can be pointed and aimed to ascertain the distance and orientation
of a partially-known obstacle surface. The idea is that by choosing where and when
to point the sensor, the robot can gather information about the geometry of the
environment. This information, in turn, can be used to infer both the position
of robot and bounds on the possible geometries of the environment. That is, the
action of pointing the sensor and taking a "view" provides constraint on the current
position both in C and in J.

Of course, it is possible to model such a sensor naively within the [LMT] preim-
age framework. For example, one could assume that the sensor continuously takes
views of the environment, in all directions at once. Then one could, in principle,
obtain upper bounds on the position sensing accuracy that can be inferred from
these views. These upper bounds could then be incorporated into esp, the position
sensing accuracy of the robot.

We refine this model as follows. We assume that it is not feasible to take
continuous views in all directions at once. In particular, we assume that only a
discrete number of views may be taken, and that the robot must choose where
(in the plan) to take them, and in what (relative) direction. Thus the primitive
operations available to the robot are of two types:

. Motion Commands, of the form "Move in heading (x, y, 0) until (termination
condition)." These are the standard kinds of motion commands discussed in
the development of the [LMT] and EDR framework. The termination condition
is the usual termination predicate.

-..

* Sensing Commands, of the form "Point the sensor in direction 0 and take a
view." This returns an approximate distance and surface normal reading.

Sensing commands are always executed at rest. We define a motion plan with
active sensing to be a sequence of motion commands interspersed with sensing

* commands. As usual, conditional branches are possible. An EDR plan with active
sensing is a motion plan with active sensing that is an EDR plan. The question
is: how can active sensing be incorporated into the EDR framework? We will
answer this question by showing how to generate EDR plans with active sensing.
As a corollary, we obtain a technique for generating guaranteed plans with active
sensing.

The key idea is to define a kind of "equivalence" between sensing and motion.
Informally speaking, active sensing is like moving up to an obstacle, measuring the
distance traversed and the normal there, and then moving back to one's original
position. At that point, by consulting an approximate "map" of the environment
and using dead reckoning, a better estimate both of one's position and a revised
"map" can be obtained. Using this "equivalence" between sensing and motion, we

4 229

%. 4 k

..".-S-iw A _'r i - ' " " . .] '''% % H % %

then can represent both motion and active sensing in a single generalized configu-

ration space. In this space, both motion and active sensing are represented as kinds
of "generalized motions." This representation permits the planner to treat sensing
and motion uniformly. More precisely:

- We describe a reduction of the problem of EDR planning with active sensing
to (ordinary) EDR planning in a larger generalized configuration space, that
represents both motion commands and sensing commands as "generalized mo-

tions. "

This reduction is computational; it is similar in flavor to the reduction of plan-

ning with model error to computing preinages in a higher-dimensional generalized
configuration space.

It is now our task to make precise this notion of the "equivalence" between
sensing and motion. To develop this notion without clutter, we will initially simplify

the problem as follows. Assume that the robot is a point robot, and that rotations
need not be considered. Furthermore, we prohibit pushing across J, the space of
model uncertainty. Hence the robot's configuration space C is simply the plane.
The reduction of the robot to a point is of course justified by existing configuration
space formalisms. We will reintroduce rotations later after describing the basic idea.

First, we introduce the definition of a generalized configuration space planning
universe. A planning universe is a tuple

(g, 0, CP v C ltp)

consisting of

a generalized configuration space!; = C x J,

a set of generalized configuration space obstacles 0 = { O1,
the position sensing, velocity sensing, and control uncertainties, ep , e,I ee.

the coefficient of friction p,
and the termination predicate tp.

The planner can plan motions in this universe using the EDR framework described
" earlier. tp represents the termination predicate available to the run-time executive.

For example, we might have the [LMT] termination predicate, which uses position-
and force- sensing, as well as time and history. Other termination predicates include
that of [Mason], which remembers a continuous history of sensed positions and
velocities, and stick, which terminates based on sticking.

-.4 Now, we assume that our initial planning problem is given by the tuple

UM (,1, E , 1ev, Eec, A, tp) (1)

where Q is simply R2 x J as described above to define the space of motions for the

mobile robot. This may be thought of as the "motion universe." We wish to extend

"' 230
I'

_~~~ ~ C,,,.;o. "

~Fig. 1. Schematic illustration of the framework for EDRt planning with active

sensing.

_j this universe to incorporate active sensing. We can do this by "adjoining" a "sensing

universe." Motions planned in the motion universe Um correspond to physical

., motions of the robot, like "Move in heading (z, y)." "Generalized motions" in the

. sensing unverse correpond to active sensing commands, like "Look in direction 0b
~and take a view." In addition, the planner needs some special actions that move

• between the sensing and motion universes. While these actions have no real physical
significance, they may bethought ofas "preparing to mv"or "preparing tosee.

'-"We must now define the "sensing universe."

," The sensing universe, which we call Us, contains the same obstacles as the
~motion universe (1). The sensor can be aimed in this universe. Once the sensor
O.1 is aimed, we imagine that a "line of sight" motion Move(ob) is commanded. This

. motion terminates on the first surface it hits.1 Here is the idea: this line of sight

motion can be modeled as a generalized damper motion with control error eari, the

'A s s u m i n g n o m i r r o r s !2 3

.23.

aiming accuracy of the sensor. That is, if the nominal sensor aiming direction is €,
then the effective line of sight motion is actually in some direction in the angular
interval (0 - eirn, € + em). Once the motion terminates, the distance traversed
can be measured with accuracy fdit. The normal on the surface at the point of
"contact" can be measured with accuracy e,. The uncertainty bounds Edi.t and
fe will be taken to be the position- and force- sensing uncertainties, resp., in the
sensing universe.

Thus we construct a sensing universe whose uncertainties are given by the error
characteristics of the sensor. We next provide the planner with the primitive com-
mand Move(S), which moves from the motion universe into the sensing universe,
retaining the same position (in !) relative to the obstacles 0. Once in the sensing
universe, it is then possible for the planner to command the generalized motion
Move(o).

We have said that active sensing was like "moving to an obstacle, measuring
its distance and normal, and then moving back to the original position." So far
we have sketched how the sensing universe models the mot; .n up to the obstacle.
Now we must describe a "return universe" which models the motion back to the

• original position. The return universe is perfect: there is no control error. However,
q the only termination predicate available is pure position-sensing associated with

the command Moveto(xo, yo), where (xo, yo) indicates the actual position of the
robot before the Move(S) command. That is, in the return universe, there is
perfect position control, but the only position that can be commanded is the original
position.

Thus we can define the following commands which are available to the planner
to use in its motion strategies.

List of Generalized Motions Commands

1. Physical Motion Commands. Same as "Motion Commands" above. Ap-
plicable at any time in universe UM.

2. Move(S). Applicable at any time in universe UM. First, record the actual
position of the robot in the variable (xo, yo). Next, move from the motion
universe into the sensing universe, retaining the same position (xo, yo) relative
to the obstacles 0.

3. Move(o). This commands a straight line motion in relative direction 0, subject
to aiming inaccuracy cairn. When the motion terminates on the first surface

Sio struck, the sensing uncertainty bounds edist and e, provide a characterization

of how accurately the distance to the obstacle and its normal may be measured.
Note that the line of sight motion effected by Move(o) does not move across
J. It moves in C and retains the same position in J. Applicable only after a
Move(S) command.

232

"41 r

4. Move(R). Move from the sensing universe into the return universe, retaining
the same position relative to the obstacles 0. Applicable only after a Move()
command.

5. Moveto(zo, yo). Move with perfect accuracy from wherever the robot is to
(xo, yo), where (xo, yo) is the value stored by the last Move(S) command. That
is, (x 0 , yo) is a literal here, and may not be chosen by the planner. Applicable
only after a Move(€) command.

6. Move(M). Move from the return universe into the motion universe, retaining
the same position (xo, yo) relative to the obstacles 9. Applicable only after a
Moveto(xo, yo) command.

We now make the construction somewhat more formal.

The sensing universe Us is defined to have the same obstacles as UM. How-
ever, the uncertainties in Us correspond to the error bounds in aiming the sensor,
and in measuring the distance and normal to an obstacle. To construct Us, first

4assume that edit = 0 and e,, = 0 that is, assume a perfect sensor which is aimed
inaccurately. Then we could construct Us as

Us,perf ect (, 0, 0, 0, am, oo, stick).

In the sensing universe, the coefficient of friction is infinite. Hence the line of sight
motions which terminate on the first obstacle they strike are exactly modeled by
damper motions which stick on any surface. The termination predicate halts such
motions as soon as they stick, that it, as soon as they make contact.

The point is that with a perfect sensor, the motion Move() terminates exactly
on the surface W it strikes. However, for an imperfect sensor, this motion must be
modeled as terminating within edit of this surface. That is, the motion terminates
within the set W E) Bdit, where Bdist is a ball of radius Edi.. We can model this
termination via a "jerky" termination predicate which stops on the first surface it

hits (using sticking), and then "jerks" away some distance no greater than edist

before halting. We denote this termination predicate as stick ± Edist. Hence, in
general,

US (, ediat, C., ei,, oostick ± edi.t). (2)

6Recall that push*(.) denotes the a priori push-forward based on sticking. Sup-
pose that the initial position of the robot is known to lie in some start region R.

Then with a perfect sensor, Move() simply terminates within pusho(R). push,(R)
is identical to the obstacle edges of the forward projection of R under 0 subject to

control uncertainty faim and p = o0. With an imperfect sensor, Move() termi-
nates within the set

233

.]'r

pusho(J?) EDBit

The return universe UR also has the same obstacles. In it we have perfect
control and sensing:

UR = (, 0, -,0,-, pure position control). (3)

Of course, in UR we are only permitted to command one motion; the motion re-
turning to (x0 , yo). In both the sensing and the return universes, 9 is again 2 x J.

EDR planning with active sensing may be regarded as a planning problem in
the larger generalized configuration space

- UM U Us U UR. (4)

We regard this generalized configuration space as endowed with a special "physics"

that governs motions in the three universes it comprises, and how the robot can
in fact move between universes. In addition, of course, the planner must satisfy
certain compositional constraints in constructing plans. That is, certain steps are
only applicable, or valid, when preceded by other steps. This is a constraint on the
type of operators available to the planner when it chooses commanded generalized
motions. For example, in the physical motion universe UM, there is a choice between
a physical motion command (in UM) and a Move(S) command to enter the sensing
universe. But once the sensing universe has been entered, there are no choices in
the type of operator to apply, but merely in their parameterization (specifically, the
choice of 4,).

For this reason, any implementation of EDR planning with active sensing
should combine operators (2-6) into a single operator

(2-6). Sensor(O). Command the sequence of generalized motions: Move(S),
Move(O), Move(R), Moveto(xo, yo), Move(M).

I0

-:. The operator Sensor(O) is the formal model for Sensing Commands (as defined
A _ above in boldface). The reason we decomposed this operator into steps (2-6) was

to illustrate the structure of the problem, and to show how active sensing could be
*O ° integrated into motion planning with uncertainty, using familiar tools in the EDR

framework.

This completes the reduction for the special case of point robots in the plane.
We will now provide an example, and then return to generalize the reduction to
non-point robots with rotational degrees of freedom.

" 234

0"

•
1

push,(R)

_/

/?

03

4..

Us Ui

a..i

: : Fig. 2. Detail of the generaized motion Move(O) in US. The start region is R.

The forward projection if the outer envelope of all posible lines of sight, given
the aiming error of the sensor. The push-forward is the wall of O$ the s en

13.1. Using Information Provided by Active Sensing

++ In this section we clarify how the additional infomation provided by active
* sensing is used by the planner to further constrain the position of the robot in gen-

~eralized coniguration space. While the incorporation of this constraint iJ implicit

in the reduction above, it helps to see an explicit construction in an example. This
example builds on fig. 1. The development here is somewhat informal.

A ' Suppose that the robot is known to lie in some region R in generalized con-
figuration space. For example, in fig. 2, R is the same size as the position sensing
uncertainty ball Bs,. We wish to calculate explicitly how taking a view in direction

0 can further constrain the possible positions of the robot. For example, by point-
ing the sensor at a wall of obstacle 03 in fig. 2, the robot may be able fn further
localize its position, given some information about the distance and oricuLtation of

235

.4.

push,(R) 9 BdG ,

R 2Trana

4 a

Fig. 3. After the generalized motion Move(O) terminates, the robot is knownto lie within distance eli.t of the sticking push-forward. This defines a tube in

generalized configuration space. The information effect of the perfect "return"
motion Moveto(zo,yo) is to translate this tube back to the original position.
The run-time executive now has better localized the position of the robot.

the wall.
A line of sight in direction 0 is considered to be like a straight line motion. We

must consider al lines of sight that are possible, given the aiming inaccuracy of the
sensor. We view all possible lines of sight as a region in generalized configuration
space. This region is the forward projection F,(R). No sliding is possible in the
forward projection, since the coefficient of friction is infinite. The push-forward
(based on sticking) of the generalized motion Move(4) is part of the wall of obstacle
03. This region is denoted push,(R) in fig. 2.

An upper bound on the run-time executor's knowledge of the wall's position is
found as follows. Let Bdi.t denote the size of the position sensing uncertainty ball
in Us. This ball is an upper bound on the sensor's ability to localize distances. The
knowledge of the wall's position will lie within the convolution of the push-forward

238
_%

.p

of the generalized motion Move(o) by Bdi,t, that is,

pusho(R) E Bdi,. (5)
Hence, after executing motion 0, the virtual robot is guaranteed to lie within dis-
tance fdit of the wall 03.

Now suppose the actual position of the physical robot is (xo, yo), as in fig. 2.
Then the information effect of the command Moveto(xo, yo) is to translate the set
(5) back to the original position. We denote this operation by2 trans(Z0, 0)(.). Thus
after the sensing operation Sensor(O), the position of the robot is known to lie
within the set

R n trans(,0,y0)(pusho(R) ED Bdist). (6)

• 13.1.1 Using Normal-Sensing Information

The detailed starred sections below may be skipped at first reading.
The sensor's ability to detect surface normal orientation provides additional

constraint. That is, by sensing the normal, the sensor can further localize the point
of contact within eq. (5). Recall that ir denotes the canonical projection of phase
space onto position space. Then the localization provided with combined distance-
sensing and normal-sensing is found as follows. Let B, denote the normal-sensing
error ball of radius e in phase space. Now, let F(.) denote the forward projection
in phase space. From the phase-space forward projection, we derive the a priori
phase-space push-forward based on sticking, push,(.). We can view an element of

push4(R) as a pair, consisting of a point and a tangent vector. Suppose that n*
denotes the normal as sensed by the sensor at execution time, and let n*± be its
orthogonal complement. Thus Bn D n* ± represents the set of all possible actual
tangent vectors consistent with n*. Then after termination, the motion Move(O)
is known to be within the set'

Eq. (7) replaces (5) when normal sensing is available to the sensor.

6 * 13.2. Generalizations

We now relax some of the initial simplifying assumptions adopted above. In
particular, we generalize the framework for EDR planning with active ,casing to

2 The definition of trans is informal.
3 Formally, the notation in eq. (7) assumes that G is parallelizable.

237

r e* '- -. - - - -- - - - ' -' " " -' --' -. " -' -. ' , - -- , -.-', ' - -. ." . .."

"€ the case of a polygonal robot moving with three degrees of freedom in the plane,
amidst partially-known obstacles. Some of the obstacles may be pushed by the

robot, which may change their position and orientation.

* 13.2.2 Pushing

First, we incorporate pushing in the model, as follows. Physical motion com-
mands (in the physical universe UM) are permitted to cause pushing of movable
obstacles, resulting in cross-coupled motions in C and J. However, the operator
Move(O) can of course cause no motion in J, since it corresponds to vision sensing.
Hence we must simply restrict the effect of the straight-line motion Move(O) to
motion exclusively in C.

• 13.2.3 Non-Point Robots

Next, we wish to consider robots which are not points, for example, polygonal
robots in the plane. Assume without loss of generality that the sensor is mounted
on the robot at the reference point. Then we must simply replace the general-
ized configuration space obstacles in the construction of Us and UR by the set of
generalized real space obstacles, B. B represents a variational family of real-space
obstacles. Intuitively, 0 represents the B "grown" by the shape of the robot. That
is, 0 is constructed by convolving each generalized real-space obstacle with the

robot geometry.

More precisely, let B6(a) denote a particular shape of an obstacle in the envi-
ronment for a in J. /3 indexes the set of all such obstacles. Then

B {(BO (a) C)}1E J}
':

Now, assume for simplicity that the shape A of the robot is exactly known. If E
denotes convolution with the reflection as in [Lozano-Prez], then

Thus of course, for point robots, 0 and B are identical.

* 13.2.4 Rotations

-'"- We now incorporate rotations into the planning framework for active sensing.

First, in the construction of the physical motion universe UM (1), we construct Q
as R x S' x J, using the Euclidean group on the plane for C. The generalized

238

4%

%4 X . " 4 4 .

configuration space obstacles 0 are constructed in the usual way for rotations and
translations. Next, we will leave G as R2 x J in constructing the sensing and return
universes, (2) and (3). The obstacles in the sensing and return universes are the
generalized real-space obstacles B as described above. Again, the generalized motion
Move(O) moves only in C, without changing the position in J. However, note that
Move(O) is restricted to be a pure translation in Us, terminating on some real space
obstacle in B. This is an important difference. The physical motion commands can
move with three degrees of freedom in C within UM; however, the sensing command
moves as a pure translation in Us. Furthermore, it moves in generalized real-space,

.- : amidst generalized real-space obstacles, whereas the physical motion commands in
UM move in generalized configuration space amidst generalized configuration space
obstacles.

'U' Some technical changes are required in the Move(S) and Move(R) operators.
When Move(S) is executed from actual configuration (x, y, 6) in the physical mo-
tion universe UM, the forward projection consists of the point (X, y) in the sensing
universe Us. The original actual position is stored in a variable (x0 , yo, 00). This

* variable is used by the pure position control command Moveto in the perfect return
universe UR. This is easy to formalize by representing the generalized configuration

"* space in (4) as G x 3, where UM, Us, and UR are identified with the subspaces
G x { 0 }, 9 x { 1 }, etc. We then view the motions between universes as a combined
projection and shift. For example,

Move(S): UM Us C G x 3

((x, y, 0), 0) ,-* ((x, y), 1).

Move(R) may be formalized similarly as a combined lifting and shift.
This completes the redlction of EDR planning with active sensing to EDR

planning in a three-fold generalized configuration space.

13.3. Discussion

* In this chapter, we described a reduction of EDR planning with active sensing to

(ordinary) EDR planning in a larger generalized configuration space that represents
both motion commands and sensing commands as "generalized motions." The re-

A duction involves defining a kind of "equivalence" between sensing and motion, which
permits an EDR planner to treat sensing and motion commands "uniformly." These

generalized motions can be represented in a "threefold cover" of generalized con-
figuration space. The equivalence defined relies on the similarity between visibility

analysis and generalized damper motions.4 With our tools for planning with model
error--specifically, the generalized configuration space formalism-it was possible to

4This similarity was exploited extensively by [Buckley].

239

-,r r 'IU1

All °A

give a precise characterization of what it means to plan with active sensing, and to
derive a formal method for constructing these plans. The generalized configuration

space representation was critical not only in representing the uncertain environ-

ment, but also in defining a planning model for active sensing. It is interesting to
. .. note that while generalized configuration space was originally envisioned exclusively

-' as a framework for representing geometric model uncertainty [D], it appears to have

broader applicability in planning pushing operations and active sensing. In EDR

planning with active sensing, generalized configuration space is particularly useful

in developing a systematic model of the error in absolute position vs. the error in

the map of the world: the first is position error in C, the second is position error
in J. Both may be reduced through an appropriate choice of physical motions or

active sensing. However, error in C can grow with physical motion, while error

in J cannot.5 Furthermore, active sensing can only reduce the error in C and J;

it can never increase it. When viewed in this manner, it is not at all clear that

there should be any unifying concept for physical motion and active sensing! It is

even more surprising that the unifying tool should emerge as our familiar friend,
generalized configuration space.

This reduction yields an effective technique for planning motions and active

sensing for a mobile robot in a partially known environment. This technique pro-

vides a principled approach to motion planning with active sensing. It shows how to

incorporate a more fine-grained model of sensing into the EDR planning framework.

As a corollary, of course, we obtain a method for planning guaranteed strategies
with active sensing.

Much work remains to be done. In particular, the EDR framework for ac-

tive sensing is still fairly theoretical. Mobile robot environments are often highly
Sunstructured [Brooks, 85], and representing this geometric uncertainty using gener-

alized configuration space presents a non-trivial problem. Furthermore, it may be

impractical to model more general vision or sonar sensors without further enhance-
ments to the EDR theory. More study is required; hopefully this theory of EDR

planning with active sensing can provide a starting point.

5unless pushing is allowed.

240

0d.

V. Implementation, Computational Issues

In this chapter, we describe the LIMITED plane-sweep algorithm. We then
' turn to the problem of generating motion strategies. LIMITED has a crisp algo-

rithm for verifying EDR strategies, but to generate a strategy, it must quantize
the space of commanded motions and enumerate motion strategies exhaustively.

i- How can motion plans be generated without exhaustive quantization of the space
of commanded directions? To this end we introduce the mon-directional backpro-
jection. It allows us to devise exact algorithms for planning guaranteed strategies,
given certain restrictions. We also address generalizing such algorithms to planning
multi-step strategies, and to generating EDR strategies. While the motion planning
with uncertainty is known to be hard for exponential time [Canny and Reif], we are
able to identify certain interesting subclasses of planning problems which are easier
(polynomial or single-exponential time). These techniques for generating multi-step

" "strategies will hopefully be useful in EDR planning as well.

-°

241

54

..

.
..:-.

14. Implementation, Computational Issues
'.-,

14.1. Comments on the Plane Sweep Algorithm

Given a 2D slice of generalized configuration space, LIMITED employs a plane-
sweep algorithm for computing unions, intersections, and projections. (By projec-
tions we mean forward projections, backprojections, and weak-backprojections in
that slice). The algorithm uses exact (rational) arithmetic, and computes unions
in O((n + c) logn) time, and projections in O(n logn) time.1 The design and im-

plementation of the 2D plane-sweep module is joint work with John Canny; the
algorithm is based on [Neivergelt and Preparata] (who give a union algorithm) and
related to [Erdmann] (who implemented an O(n 2) backprojection algorithm, and
suggested an improved O(n log n) version). In this section we briefly discuss some
details of the algorithm. A full listing of the ZetaLisp code for the plane-sweep
algorithm running on a Symbolics 3600 is provided in an appendix. In LIMITED

there are, of course, many software layers built on top of the sweep algorithm for
* quasi-static analysis, EDR planning, propagation across slices, distinguishability,

and so on. In EDR planning, we essentially reduce the problem of EDR verification
to deciding certain set-relations. The basic sets are projection regions. Both the
projections and the set operations are computed by calls to the sweep algorithm.
The design and implementation of a robust geometric engine is a formidable task.
In this section we share some of our experiences.

We do not go on at great length about the details of the algorithm because, first

of all, it is fairly complicated, and second, from a complexi ty- theoretic viewpoint,
-.- the result does not improve known bounds by much. Readers interested in the

details of the algorithm will find them in the appendix.

14.1.1 The Basic Idea

We now sketch the classical plane sweep approach at a high level. In plane

sweep algorithms, the vertices of the input edges are sorted on planar lexicographic
x-y order, eg., lower left to upper right. This is accomplished using an AVL tree.

A line is swept across the plane in this order. The algorithm keeps track of the
polygonal regions swept across by maintaining an ordered queue of intervals on
the sweep line. This queue is also maintained using a (different) AVL tree. Each

. .';, interval along the sweep line has an associated "color." The color is an integer; 0 for
free space, 1 for a region inside one input polygon, 2 for a region inside two input
polygons, etc. The boundaries of the intervals grow or shrink with the sweep in a

1 Where n is the number of vertices in the slice, and c is the number of intersections.

242

04

4,"

-- - - - - - - --- ----- --

known way: their change is given by the line equation of their endpoints. These
line equations are taken from the line equations of the input edges.

An "event" occurs when a new vertex is encountered in the sweep. Such an
event affects one or more of the intervals in the interval queue on the sweep line.
For example, in a "closing" event, the "end" of a polygon has been encountered (it
has closed up), so all of the polygon lies to the left of the sweep line. In this case,
the interval associated with the polygon is deleted, the two surrounding intervals
are merged, and the polygon loop is placed on the output queue. Other events
include "start" (start a new polygon) and "crossing", when the line equations of
three adjacent intervals intersect. In a crossing event, two line segments intersect
and their associated interval boundaries must be merged.

In developing a sweep algorithm for projections, we proceed as follows. Con-
sider the forward projection. We introduce two new colors, the projection color
and the start region color. The sweep proceeds in the direction of the commanded
motion. When the sweep encounters the start region, then intervals of color start
region are inserted into the interval queue along the sweep line. When these inter-
vals close, then intervals of color projection must be queued. The line equations of
the free-space endpoints of these projection intervals are parallel to the sides of the
commanded velocity uncertainty cone. This occurs when the projection intervals
border free-space intervals.

When an interval of type projection crosses an interval of type obstacle (color
> 1), then either (1) it may be closed off, (2) the obstacle edge boundary may be
taken as the projection region boundary by updating the line equation of the projec-
tion interval's endpoints, or (3) depending on sliding behavior, a new "degenerate"
interval, with no width, sliding along the edge may be queued. Whether the mo-
tion can slide on an edge e is determined by intersecting the reflected ("negative")
velocity cone with the friction cone on edge e. In case (3), the line equations of
degenerate interval's endpoints are copied from e.

When the sweep is complete, the output is an arrangement of polygons with
different colors, including the projection and the start region colors. The forward
projection is simply all polygons with color projection or start region. This algo-
rithm is correct given the following assumption:

Correctness Criterion: The plane sweep algorithm is correct when (a) the friction
cone is larger than the commanded velocity uncertainty cone and (b) there is a

bounding box around the input environment.

This criterion is necessary, because the sweep algorithm is monotonic; hence
to be correct, we must ensure that motions are also monotonic and cannot back up
on surfaces.

5' 243

.1..

% %

%.

By introducing a goal color, backprojections and weak backprojections are com-
puted analogously, sweeping in the opposite direction to the commanded motion.
The weak backprojection is actually a conservative (under)-approximation, since
it does not take into account weak backsliding [Buckley]. This is because weak

S- backsliding is non-monotonic and so a sweep algorithm will not suffice. Actually,
our plane sweep algorithm can only sweep in one fixed direction; hence we rotate
the environment first so that the sweep axis coincides with the commanded motion
direction, and then rotate the projections back to the canonical orientation.

For details of the sweep algorithm, please see the appendix.

14.1.2 Contrast with Previous Algorithms

We now compare our algorithm, which we call Sweep, with previous work.

1. Sweep combines the ability to compute set operations and projections in one
sweep.

2. The plane sweep algorithm of [Neivergelt and Preparata] for computing set
operations on polygonal regions assumes general position. Sweep does not.

3. Note that [Erdmann] described the first backprojection algorithm in the plane.
He also described slice algorithms for 2D with rotations. [Buckley] described non-
slice backprojection and forward projection algorithms in 3D with no rotations. All
these algorithms have been implemented.

4. The algorithm of [Erdmann] can compute the backprojection of a single edge in
time O(n log n). In Sweep, the goal region can be an arbitrary polygon. Similarly,
in Sweep, the start region for forward projections can be an arbitrary polygon.

5. Sweep is implemented using exact (rational) arithmetic.

6. Sweep can compute forward and weak backprojections as well as strong back-

projections.

.!1 14.2. Non-Directional Backprojections

. 14.2.1 Intuition

LIMITED is a generate-and-test planner. We have elaborated the "test" portion-
verification of EDR strategies as decision problems about projection sets. Now it

is time to take a more sophisticated look at the "generation" problem. How can
motion strategies be generated without exhaustive quantization and search?

244

[$I.
Vlz, 'I• -. • .44 r ' o. .I _ t I -] .' " ¢ -_ " •- , ".,* ,€ " * " * " " - " . . " v f - e . . -

-- .- - , W . -, Si' C.' ' '(~ ~ W k - V7W', = -,J "V & . W

A significant weakness of LIMITED is its method for generating commanded
motions. It simply quantizes the space of all motions. Thus to generate two-
step plans 01 * 02 LIMITED must quantize the space of motions 01 to generate the
first motion, and then quantize the space of motions for 02. Essentially, LIMITED
implements an existential theory; the planner can verify a strategy but the strategy
must be "guessed" by some oracle, or by exhaustive search. This is theoretically
unsatisfying, as well as impractical. We now address this problem. In particular, we
provide a method for generating two-step plans 01*02 which only requires "guessing"
01. That is, once 01 is provided, 02 can be generated.

To this end we define a combinatorial object called the non-directional backpro-
jection, and give a critical slice algorithm for constructing it. The non-directional
backprojection may be used to represent, in a sense, "all possible backprojections"
of a fixed goal. We intend to use it to generate motion strategies.

Ndirectional backprojection as the union of all backprojections in the plane:

*2 UBe(G).
e

We will use a different definition. However, it is in the same spirit as [LMT,E],
and so we will employ the same name. We must point out, however, that both
M. Erdmann and R. Brost have considered2 a similar construction for generating
commanded velocities, and also thought about a critical slice approach to computing
it.

Our definition exploits generlized configuration space. Consider the following
argument.

1. Suppose we have a planar polygonal environment with no model error. In
generating motion strategies, we do not know which way to point the robot-
that is, we do not know which way to command the motion. Thus in some sense,
there is "uncertainty" in "which way to go." This "uncertainty" is the variable
0. Thus we have a kind of three-dimensional planning problem, with degrees of

S freedom x, y, 0. As the reader may expect, we intend to map this uncertainty

in "which way to go" into our familiar friend, generalized configuration space.
' 2. Now, consider a problem which is in some sense dual to generating motion

strategies. In this problem, we only consider one commanded motion in a fixed

V' direction vo*. However, there is total uncertainty in the orientation of the entire

environment. We may represent this uncertainty by a variable 0 also.

Clearly, both problems (1) and (2) can be represented in an generalized con-
figuration space where x and y are the degrees of motion freedom, and 9 is. "model

2[Personal communication]. I am grateful to M. Erdmann for pointing out the .imilarity
of the construction.

245

'

% " "" "- """""-04

error." Here is the difference, however. In (2), 6 is universally quantified: that is,
* we are required to ensure that a motion strategy succeeds for all 6. In (1), however,

6 is existentially quantified. We merely need one 6 to find a commanded motion.

The precise analogue of (1) is a problem like (2) in which we get to choose
• the orientation of the environment such that the vo, the fixed commanded motion

under consideration, will guarantee reaching G.

14.2.2 Computing the Non-Directional Backprojection

We now make the intuitive argument more precise. Let J be the space of all
commanded motions, so that J is exactly the circle, S1 . We write 6 E J for a
commanded motion direction.

Definition: Let G be a goal amidst polygonal obstacles in the plane. The Non-
Directional Backprojection B(G) of G is a set in R2 X j,

B(G) =U (B(G) x {O}). (1)

Now, recall the critical slice algorithms of sec. 6.4. These algorithms com-
puted 3D directional backprojections in a three dimensional generalized configura-
tion space, R x S'. They operate by determining critical orientations at which the

topology of backprojection slices change.

B(G) is also a 3D backprojection-like region. We can develop critical slice
algorithms for computing B(G) also. They will work by finding all values of 6 at
which the topology of Be(G) can change. Then the algorithm takes slices at these
critical O's and at an intermediate non-critical O's between each pair of adjacent
critical values.

Now, B(G) is bounded by developable algebraic surfaces. These surfaces are
of two types, obstecle surfaces, and free-space surfaces. The obstacle surfaces are
liftings into R2 x J of the obstacle edges in R2. The free-space surfaces are swept
out by free-space edges of Be(G) as they rotate with 6. The manner in which the
bounding algebraic surfaces of B(G) sweep between slices is completely known-
the obstacle edges stay fixed, while the free-space edges rotate with 8, remaining
parallel with edges of the velocity cone. Now, each free-space edge is anchored at an
obstacle vertex cobounding a possible sticking edge. As 0 varies, the free-space edge
rotates about that vertex. Clearly, as 0 varies, the topology of Bo(G) can change
if the free space edge contacts an obstacle vertex. When this happens, there is an
edge connecting two obstacle vertices which is parallel to an edge of the commanded
velocity cone. Next, we note that any such edge lies in the visibility graph of the

246

04 . .. M ,.. 4.W. P .

~~W

1%

planar input environment. The visibility graph may be computed in time 0(n 2).
This gives us the following lemma, which gives an upper bound on the number 3f
critical values of 0. Here is the intuition behind the lemma:

Consider a free-space edge ei(O) of Bo(G). e1 (9) lies in the infinite half-ray
ri(0) which extends from ei(9)'s anchor vertex. We call ri(0) a constraint ray;

N it is parallel to an edge of Bec(v;). There are 0(n) constraint rays in each
backprojection slice Bo(G). ri(9) rotates with 9, and it can intersect 0(n)
obstacle edges as 0 sweeps along. Now, how many other constraint rays of
the form rj(9) can r.(O) intersect as it rotates? Note that all constraint rays

U-. { ej(0) } move "with" ri(O), and are either parallel to it, or else intersect it

always. Therefore how ri(O) can intersect these other constraint rays as 0
sweeps is also 0(n).

We assume that the input polygons represent configuration space obstacles.3

We use the boundary operator 0 to denote the topological boundary.

Lemma. Given a goal G of constant size and an arrangement of input polygons P of
size 0(n), there are 0(n 2) critical values of 0 in the non-directional backprojection
B(G).
Proof. Let Bec(v;) denote the control velocity uncertainty cone about a commanded
velocity v;. We think of Bc(v;) as rotating with 0. The topology of Be(G) can
change when any of the following occur:

A. An edge of Bec(v;) becomes parallel to an edge in the visibility graph of P.
. Such values of 0 are called vgraph-critical.

B. 0 is a sliding-critical value (see sec. 6.4), where the determination of sliding
vs. sticking behavior on an edge can change. Sliding-critical values occur when

an edge of Bec(v;) becomes parallel to the edge of a friction cone on some
configuration space edge.

C. Let e,(0) and ei(9) be free-space edges of Be(G). They rotate with 0 about
* their anchor vertices. Let pij(O) denote their intersection; it is a free-space

vertex of the backprojection. Then 0 is vertex-critical when pij(O) E 9B,(G)
and pij(O) intersects some obstacle edge.

d%.

A Now, there are 0(n 2) edges in the visibility graph of P. In sec. 6.4 we showed
*o that there are 0(n) sliding-critical values. Only sliding-critical values can introduce

additional constraint rays.

?P- Now, since there are 0(n) constraint rays in each slice, it would appear a
priori that there could be potentially 0(n 2) pij(O)'s. Note, however, that each

3See sec. 6.4 for the complexity where the input is given in real space obstacles.

247

." %. .- .-.-..- , .-.. U -- U-.- '. ., .:t ,-,(. %--, .,.-... '. '' -... p ,--. %p-.

free-space vertex pi,(9) of the backprojection can be identified with exactly one

constraint ray, say the "left" one, ri(0). Hence we see that there are merely 0(n)
p,,(9)'s. Each moves in a circle. Observe that in effect, each free-space vertex of

the backprojection moves with 0 in a piecewise-circular, possibly disconnected locus.

Consider the discontinuities in the locus caused by type (A) or (B) critical values.

In between discontinuities, each circular arc in the locus can intersect only a fixed

-nber of obstacle edges. In particular, the arc cannot intersect n obstacle edges
without "using up" more type (A) or (B) critical values. Hence, there are O(n 2)

vertex-critical values of 9.

- -Next we observe that the bounds for (A) (B) and (C) are additive. In particular:

the bounds on vertex-critical and vgraph-critical values apply to all possible free-

space edges; hence the vgraph-critical and vertex-critical values do not interact and

their complexities do not multiply. Similarly, the sliding-critical bounds cover all
possible ways that a constraint ray can be added or deleted from the backprojection

boundary as 0 changes. Hence this bound is also additive. Thus we obtain the 0(n 2)
upper bound. 5I

Corollary: There exists a representation of size 0(n 3) for the non-directional back-
projection B(G).

Proof Take 0(n 2) slices at critical values. Compute a backprojection slice Bo(G)

of size 0(n) at each of the critical values of 0. 0

Comments: This upper bound means that 0(n 2) slices are required for a critical
slice representation of B(G). However, as in sec. 6.4, it seems that this upper bound

will almost never be attained in practice. In practice we will consider only small

ranges of 0. For example, for a peg-in-hole strategy, we would probably only consider

'-. directions in the lower (downward) half-plane. While these arguments do not affect

the worst-case complexity, they do suggest that in practice the number of critical 9
values may he smaller than 0(n 2).

@

We can now address the complexity of computing B(G). By this we mean,

what is the complexity of computing a precise, combinatorial description of B(G).F: The output representation is a finite ordered set of alternating critical and non-

critical slices { Be: (G), Be,,z (G),... }, along with an algebraic description of how

the free-space edges of the backprojection change between slices. (For a free-space

edge, this is completely specified by the anchor vertex and an interval of 0 for which

the surface bounds B(G)).

- As above, let P be an arrangement of input polygons representing configuration
or- space obstacles.

248

W Ve, :

% %"V
Ir 0

Theorem: Given a goal G of constant size and an arrangement of input polygons

P of size O(n), a representation of size O(n 4) for the non-directional backprojection
B(G) can be computed in time O(n4 logn).

Proof First, we compute the critical values of 0. Sliding-critical values can be com-
puted in linear time. Vgraph-critical values can be computed in time O(n2 log n).

While it may be possible to compute the vertex-critical values in quadratic time,
we give the following simple O(n 3) algorithm: Intersect all constraint rays to ob-

tain O(n 2) points pii(O). Each of these points is a possible free-space vertex of the
backprojection, and each moves in a circle with 0. Intersect these circles with the ob-
stacle edges to obtain O(n 3) possible critical values of 0. The actual vertex-critical

values will be contained in this set.

Compute O(n 3) slices Bo(G), at each the possibly-critical value 0, using Sweep.
Sweep computes a 2D backprojection slice in time O(n log n), and the output has

size O(n). 0

Some comments are in order. First, our algorithm is naive, in that each back-
4. projection slice is recomputed from scratch. In fact, this extra work is unnecessary.

At a critical value of 9, very few aspects of the topology of the backprojection will
change. That is, typically, only one or two free-space edges will be introduced,
or disappear, or change at any critical value. We can make this notion precise as
follows. If 0 is a generic singularity, then exactly one edge or vertex of BO(G) will
appear or disappear there. Hence, for example, we can ensure that all critical val-
ues are generic singularities with probability one by subjecting the input to small
rational perturbations.

Suppose that a backprojection has been computed in a critical slice at 0. Then
to compute a backprojection in a nearby non-critical slice at 0 + e, we merely need

to update the portion of the backprojection boundary which was critical at 0. This
requires only constant work: only one edge or vertex must be changed to derive
a backprojection in the new slice! The new slice, furthermore, need not be copied
in entirety. Instead, the representation for the new slice can simply indicate how
it has changed from the old slice. It is reasonable to speculate that this technique
would yield an algorithm of time and space complexity O(n 2 log n) for computing

B(G). (The log factor arises from the necessity of sorting the critical values).

4.

14.2.3 The Non-Directional Forward Projection

The "dual" to the non-directional backprojection is the non-directional forward

projection:

249

r0

L ,",. . . , ,: ,. • • , , ,, ,

4 ,.

Definition: Let R be a start region amidst polygonal obstacles in the plane. The
Non-Directional Forward Projection F(R) of R is a set in R2 x J,

F(R) U U(Fe(R) x fe})

As a corollary to our bounds on the complexity of the non-directional backpro-
jection, we obtain the following theorem which may be derived mutatis mutandis:

Theorem: Given a start region R of constant size and an arrangement of input
obstacle polygons P of size O(n), let F(R) be the non-directional forward-projection
of R. Then
a. there are 0(n 2) critical values of 0 for F(R);
h. there exists a representation of size 0(n') for F(R);

a representation of size O(n4) for F(R) can be computed in time O(n 4 logn).
.

We will need the following corollary later:

Corollary: For a constant-sized start region R and goal region G, amidst an ar-
rangement of input obstacle polygons P of size O(n), the non-directional forward
projection F(R) and non-directional backprojection B(G) have representations as
polynomial-sized formulae in the language of semi-algebraic (s.a.) sets. Further-
more, these formulae are quantifier-free.
Proof: We can represent the non-directional forward projection (resp., backprojec-
tion) at a polynomial (in n) number of critical values { 0,1.. } } via the formula

A=A(O =, (x,y) E F,(R)).

Let two adjacent critical values be Oa" and 0!ax . In between adjacent criti-
cal values of 9, the non-directional projection is bounded by a fixed 4 set of O(n)0

developable algebraic surfaces. That is, when 0 is between 9!', i and O sxthe non-

directional projection is the intersection of some fixed set of O(n) algebraic half-
spaces. These half spaces are represented by algebraic inequalities, { gij(x, y, 9) <
0 } where each gii is a polynomial. The form of the g,, is discussed in 14.2.2. We

0, define the predicate

C, = A(gj(x, Y, 0) _< 0),
• "".:j=1

.i.e., fixed between OTi and 0 max .

250

04

. 2 5%

10 ",% k

-~~~~~~~~~~- .. .~r ' w w r r ~ w

where mi is O(n). We construct the non-directional projection as a s.a. set in a
case statement, AA^A(E m9i,9 'a) =.c 2).

14.3. Generating Multi-Step Strategies using the Non-Directional
Backprojection

We now describe how to employ the non-directional backprojection B(G) to
generate two-step strategies with "less quantization." More precisely: while LIMITED
is required to hypothesize both the first motion 01 and the second motion 02, we can
show how, given 01, 02 may be computed. Hence only 01 need be guessed through
exhaustive quantization, and 02 can be computed deterministically.

Let C be the configuration space R2, and J the space of commanded motions
S' as above. Define the projection map

Cj CX J -~J

' .(X (xyle) 0 . ,

Now, algorithm Semi-Plan, below, takes a first motion 01, the goal G, the
start region R and the set P of input polygons representing the arrangement of
configuration space obstacles. It computes the set T of all commanded motions 02
such that 01 * 02 reaches G.

Algorithm Semi-Plan

1. push91 F.#,(R)."

. 2. R1 +- pusho, x J.

* 3. T 4J-- rj R - B(G).

4. Return any 02 E T.

To see that Semi-Plan is correct, we simply observe that J is the set of all

commanded motions 02, and that

•rjR 1 -B(G) (2)

is simply the projection onto J of where the push-forward of 01 lies outside the
non-directional backprojection. Choosing any 02 in the complement of (2) results
in a two step motion that is guaranteed to reach G.

251

I..'-..-. ., .. *....., ...*., . .-.. ' ,......-........-.......-............."....................-.--..-.......... . .- *. . .

.- a,.'J" ' y' . , " ' ".' % .. y% %~

Algorithm Semi-Plan has several advantages over exhaustive quantization of
both 01 and 02 spaces of directions. First, it requires less quantization. Second, it
provides all 02 such that 01 * 02 reached G, instead of just one. Third, the algorithm
is crisper, in that it exploits the structure of the non-directional backprojection; the
algorithm is not blind. Finally, it is possible to give precise analyses of Semi-Plan's
combinatorial complexity, as above. Clearly, the complexity of computing B(G)

S,.will dominate.

14.4. Comments and Issues
Semi-Plan represents a theoretical algorithm. It has not been implemented in

LIMITED. It was described here to give some characterization for bounds on comput-
ing multi-step strategies. In particular, it gives a precise, combinatorial description
for the 3D non-directional backprojection B(G) for a planar polygonal configuration
space environment. Semi-Plan directly addresses the question of planning two-stepSstrategies. The critical slice method attempts to put the directional backprojection

techniques used in LIMITED on a firm mathematical footing. It gives a principled
way to choose motion 02 given 01, a bound on how many slices are required, and
an algorithm which does not have to exhaustively enumerate the possible second
motions 02.

Note that if we were merely interested in one-step strategies, then a variation on
Semi-Plan provides a way to compute the set of all one-step motions guaranteed to

reach the goal without quantization. Consider algorithm One-Step which computes
the set T of all motions guaranteed to reach G from a start region R:

Algorithm One-Step

1. R, -RxJ.

2. T 4J- rj Ri -B(G)

3. Return any 0 E T.

In a sense, Semi-Plan and One-Step employ the non-directional backprojection
to effect "quantifier elimination." That is, the decision problem for guaranteed
one-step strategies is

30 R C Bo(G). (3)

One-Step provides a way to eliminate the quantifier and in fact to generate all 0
satisfying (3). For two step strategies, we have the decision problem

UF,. 302, 301 F., 1 (R) C Be2 (G). (4)

N .:
252

4^1
i,5, '. .'Y',',",'','], '.",..:,,,". " ,,."."."","'". --- ,- '€ '.' "-" " "- '-"."-"-" -- ,. - -:",:'.".-''.' : :''- ",""-.. ","". " """....4

Semi-Plan is an algorithm for eliminating the outer quantifier, and in fact, given
an 01, to generate all 02 satisfying (4). Taking this view, we can characterize One-
Step as an exact algorithm for planning guaranteed strategies in a planar polygonal
environment. By "exact," we mean that it does not rely on quantizations or approx-
imations, and that precise bounds are known. Similarly, we can view Semi-Plan as
a "semi-exact" algorithm for two-step strategy generation.

This is just a start, however, much work remains:

1. The combinatorial bounds on B(G) can probably be improved. It remains to
prove or disprove the following conjecture:

Conjecture: Given a goal G of constant size and an arrangement of input polygons
P of size 0(n), B(G) can be computed in time O(n 2 logn) and space 0(n 2).

2. An exact version of Semi-Plan could lead to an exact algorithm for planning
multi-step guaranteed strategies. Semi-Plan is merely semi-exact. We would like
to eliminate the "inner quantifier" in (4), and thus avoid the task of quantizing
01-space. This would yield an exact algorithm for planning two-step guaranteed
strategies. One approach would be to introduce a new axis to generalized configu-
ration space, J1 , which represented the space of all possible first motions, { 1 }. We
then might lift B(G) to B(G) x J1, and construct its backprojection B(B(G) x J,)
in the space C x J x J1. In this case, however, instead of a discrete set of critical

02 values, we obtain a set of critical curves in the 01-02 plane. The critical slice
algorithm will be correspondingly more complicated, and remains to be general-
ized to this case. This approach would also require incrementing the dimension
of generalized configuration space (by 1) at each backchaining step. This increase
in dimensionality is consistent with known lower bounds on the motion planning

N, problem with uncertainty [Canny and Reif].

" 3. The non-directional backprojection is our key tool in developing an exact algo-
rithm for computing guaranteed strategies. Similarly, we would like to obtain exact
algorithms for computing EDR strategies. The key theoretical tools here would
be the non-directional weak backprojection and non-directional forward-projection.

4: The same combinatorial bounds hold for these non-directional objects. It remains
to develop exact algorithms for their set difference, for determining non-directional
sticking, and for distinguishability. One approach to an exact algorithm for multi-
step EDR planning might be as follows. Above, we suggested how an exact algo-
rithm for multi-step guaranteed strategy generation might be devised. [Brost] has
suggested a backchaining EDR planning algorithm which can generate multi-step
plans, each step of which is a strong EDR strategy. (See chap. III). By using

253

% .V

@ %i~V~~4 ~

the non-directional weak backprojection (in place of the directional weak backpro-
jection) in such a backchaining planner, an exact algorithm for multi-step EDR
planning might be constructed.

4. The exact algorithms should be extended to more general configuration spaces.
Model error should be permitted. As above, the topology of the non-directional
backprojection will now become critical along hypersurfaces in the resulting gener-
alized configuration space.

Despite the apparent difficulties in these extensions, I feel that using the non-
directional backprojection is a promising approach to the strategy generation prob-
lem. In particular, it is a principled, exact algorithm for generating compliant
motion strategies. All previous theoretical and implemented fine-motion planners

< [LMT,E,Mason,D,Buckley]-including LIMITED--essentially employed or suggested
-an exhaustive search which quantized or enumerated the set of possible commanded

motions. In order for fine-motion planners to be practical, more study of the gen-
eration problem is required.

14.5. Complexity and Theoretical Results

Above, we described a polynomial time exact algorithm for generating one-step
guaranteed compliant motion strategies amidst planar polygonal obstacles. We now
briefly address the general case of generating guaranteed r-step compliant motion
strategies. Assume sticking termination, so that for all 9 and all R,

F.O(R) = push9 (Fo(R)).

By analogy with the non-directional backprojection, we can define the non-
directional forward projection. Now, we observe that all directional projection sets
are semi-algebraic (s.a.). Then by the lemma on critical values of B(G), so are the
non-directional projection sets. Furthermore, when R has constant size, the lemma
shows that the non-directional projection sets have descriptions (as s.a. sets) that
are polynomial in the size of the input arrangement P.

In the following definition, we assume that the control uncertainty cone B, is
encoded by an angular error bound ±ec.

i

Definition: The planar compliant motion planning problem with sticking termi-
nation is defined as follows. Given a polygonal start region R of constant size, at.
integer r, a polygonal environment P of size n, control uncertainty cc, coefficient
of friction p, and a polygonal goal G of constant size, find a sequence of r mo-
tions 01,... Or such that each motion terminates in sticking, and the final motion

;.€ 0, terminates in the goal. Or, if no such r-step strategy ezists, then say so.

254

04

u rI- - - - - . . J " . " . . .*- " " " . - " - - --_ -

Theorem: The planar compliant motion planning problem with sticking termina-

tion is decidable in time n °

Proof. Let Po,...,m E R2. We define the predicates

fe(pi,P2) = P2 E F(pi) (5)

and

f(PIP=) < P2 E F.9(pi). (6)

Clearly, definition (6) is equivalent to
fe*(Pl, P2) == fO(PI,P2) A sticke(p2). (7)

We have shown how in polynomial time to compute a quantifier-free polynomial-

". sized formula (in n) for the s.a. set F(pi)-the non-directional forward projection
of pi. It remains to show that (5), and consequently (6) are polynomial-sized pred-
icates. Now, 9 E S', Pi E R2, and P2 E R2. Consider fe(', -) as a predicate on
a 5D space S' X 2 X R2, that is, as f(O,pl,p2). We can obtain a bound on the
complexity of f by enumerating all possible edges of F(p,) as 9 and p, vary. These
edges then sweep out developable algebraic surfaces in the domain of the predicate.
There are four types of edges that can bound Fe(pi):
a. An edge ei of a generalized configuration space obstacle. These edges sweep

out n surfaces of the form S1 x R2 x ei.

b. A free-space edge anchored at a vertex v2 of a generalized configuration space'I

obstacle and parallel to the left or right edge of the velocity cone. Let r(vj, 9)

denote the infinite ray anchored at vj at orientation 9. Then type (b) edges
sweep out 2n surfaces of the form U({ } X R2 x r(vj, 8 ± e,)).

c. A free-space edge anchored at p, and parallel to the left or right edge of the
velocity cone. These edges sweep out 2 surfaces of the form

U U({ } X {pi } x r(P1, "4- cc))

6P1

d. A partial edge of a generalized configuration space obstacle. Let v1 , v2 be the
vertices of a generalized configuration space obstacle edge. A partial generalized
configuration space edge can start at vi or v2 and extend to v', where v' is a

.. vertex of a type (b) or (c) free-space edge. Clearly v' simply arises as the

intersection of a type (a) surface with a type (b) or (c) surface.

By enumeration, we clearly obtain a linear (O(n)) bound on the number of
surfaces in the 5D domain of f. The arrangement of these surfaces has polynomial
size; in particular, it has O(n5) critical values. Hence we may conclude that f is a

% predicate of polynomial size in n.

255

,.................~~...,.............. ,..................,..............,,... ,
. . - I 1A

W - -r- V 4. V I W.

Now, define

• 7(,,po , P, , , ne,) f f$, (Po, Pi)^Afe*,(Pi , P)^-...^Af$,,, n-1,,P,.,).
,.. (8)

Since (6) has polynomial size in n, clearly the predicate (8) has polynomial size
in n as well. Furthermore, it is quantifier-free.

Now, we let the points pi serve as via points (sometimes known as switch-
points) for the strategy. We quantify over all possible via points achievable by the
motion strategy 91,... ,Or. By letting m be r, this is sufficient.

We can formulate the question of the existence of an r-step strategy as a deci-

sion problem within the theory of real closed fields:

.!,:::.(9)
VPO. -p,,Pr (po E R) A -(PO,...,, 91,...Or) (Pr E G).

Now, deciding sentences in the theory of real closed fields is known be doubly-
%: exponential only in the number of quantifier alternations. More specifically, the

truth of a Tarski sentence for k polynomials of degree < d in r variables, where
a < r is the number of quantifier alternations in the prenex form of the formula,
can be decided in time

(kd)o(r) 4 - ,

- (see Grigoryevj). We have a = 2, and hence (9) can be decided in time n ° (r g

This theoretical result is of interest for the following reasons. First of all, the
general compliant motion planning problem with uncertainty (in 3D) is known to
be hard for non-deterministic exponential time [Canny and Reif]. This means that
any algorithm for the problem takes at least doubly-exponential time in the worst

* case. In this section, we have introduced restrictions on the problem which make it

more tractable. These restrictions are:l The configuration space is the plane, where directional forward projections

have linear size. (In 3D they can have exponential size). A key step in our
construction was then to show that the non-directional backprojection B(G)

has polynomial size.

. Sticking termination is used.

* The maximum number of steps in the strategy is given as input to the algo-
rithm.

256

@4

With these restrictions, the problem becomes decidable in time exponential in
r. In fact, we conjecture that for a great number of planning problems, r is in fact a

small constant. When r may be so regarded, we effectively obtain a polynomial-time
algorithm for this restricted planar motion planning problem with uncertainty.

It might have been possible to devise these restrictions a priori, from a strictly
complexity-theoretic viewpoint. However, I believe that only after reading the pre-
vious chapters does it become clear that these restrictions are physically meaningful,

.: and in fact define a useful and interesting subclass of planning problems. In a way,
this thesis has been an exploration of problems solvable within these restrictions.
From this perspective, I believe it is reasonable to conjecture that a large class of
planning problems do fall under this rubric.

Of course, this is only a start. From the standpoint of developing theoreti-
cal, "exact" algorithms, we have only addressed the problem of planning certain
restricted classes of guaranteed strategies in the plane. It remains to consider exact
algorithms in higher-dimensional configuration spaces, model error, EDR, and more
sophisticated termination conditions.

"257

V

;-ni

25

O4

.1, ,. . , , % .. . , . . o . . - - . . - -. - . , , . ,. - . ,. ,, ., . , ,. .

9~-- %~~? '

VI. Conclusions

25

I'.'

15. Conclusions

15.1. Summary

This thesis offers two main contributions to the theory of manipulation. The
first is a technique for planning compliant motion strategies in the presence of
model error. The second is a precise, geometrical charaterization of error detection
and recovery (EDR). These led to a constructive definition of EDR plans in the
presence of sensing, control, and model error. These more general strategies are

applicable in assembly planning where guaranteed plans do not exist, or are difficult
to find. We tested the EDR theory by implementing a planner, LIMITED, and
running experiments to have LIMITED automatically synthesize EDR strategies.

A number of mathematical tools were developed for the EDR theory. First, we
considered compliant motion planning problems with n degrees of motion freedom,

*and k dimensions of variational geometric model uncertainty. We reduced this
.. planning problem to the problem of computing preimages in an (n + k)-dimensional

generalized configuration space, which encompasses both the motion and the model
degrees of freedom, and encodes the control uncertainty as a kind of non-holonomic
constraint. We also showed how pushing motions could be planned using generalized

configuration space. In addition to the assembly domain, generalized configuration
space was shown to serve as a "map" for planning sensing and motion strategies for
a mobile robot amidst partially known obstacles.

Next, we characterized EDR strategies geometrically via the EDR region H.
Determining whether a strategy satisfied the EDR axioms was reduced to a deci-
sion problem about forward projections and preimages in generalized configuration
space. Making this process formal and algorithmic required a detailed investiga-
tion of the geometric and preimage structure of the EDR regions. The Weak EDR
theory introduced new mathematical tools for studying multi-step strategies-

* reachability and recognizability diagrams, strong and weak strategy equivalence,
linking conditions, and strategy composition. A variety of techniques for planning

multi-step EDR strategies were investigated and unveiled as special cases of the
Weak EDR theory.

Finally, we explored the complexity of EDR planning. We derived bounds both

for the implemented planner LIMITED, and for theoretical extensions. While in

general it is known that compliant motion planning with uncertainty is intractable,
we were able to demonstrate a number of special cases where there exist efficient
theoretical algorithms. In particular, we showed a case where n = 2, k = 1 and

containment in the backprojection could be computed in polynomial time l,,rie for

n = 3, k = 0, this is false [CR]). We also investigated the structure of tih, non-
directional backprojection in the plane. It led to a polynomial-time algoriibii for

259

%.5

computing one-step (guaranteed) strategies, and a singly-exponential algorithm for
multi-step strategies.

15.2. Future Work

A number of research directions deserve further attention:

15.2.1 Probabilistic Strategies

The EDR framework should be extended to include probabilistic strategies.
At the moment the EDR theory essentially provides a binary test for recognizing
an EDR strategy. It would be useful to have a method for deciding which of two
strategies was "better." We sketched a way of formalizing this generalization in sec.
7.

15.2.2 Goals and EDR. Regions in Phase Space-Time

When the goal is specified in phase space-time as the product of a cylinder over
a generalized configuration space goal with a compact time interval, our geometrical
characterization of EDR satisfies the EDR axioms. Without time, or with goals of
the form ir-'(G) x [t, oc), tbe definition of ft does not completely fulfill the EDR
axioms. This is because it is possible for motions sticking in H. to eventually slide
into the goal, violating the principle that no motion should be terminated as a
failure when serendipitous goal achievement is still possible.

This area deserves further research. Future directions include: Relaxations of
the EDR axioms, probabilistic control strategies, implementation of termination-
predicates with time, computation of time-indexed forward projections, and study
of the structure of phase space-time goals.

0
15.2.3 Algorithmic Improvements: Search and Efficiency

*! LIMITED currently employs a great deal of exhaustive search. The space of
model error and the space of commanded directions are exhaustively quantized. We

en, have demonstrated certain theoretical results using critical slices of the projection
regions (sec. 6) and the non-directional backprojection (sec. 14) to show how

exhaustive search may be avoided by examining only "relevant" constraints. This
direction should be explored more extensively.

On a related note, LIMITED is slow. We have demonstrated efficient theoretical
algorithms for subproblems in the EDR theory. These algorithms should be reduced

260

0.

- " "" "
"

,' , z :h"x .- . .- "

to practice. EDR planning in higher-dimensional generalized configuration spaces
may be prohibitive unless faster algorithms are found.

15.2.4 How Often is Planning Hard?

While compliant motion planning with uncertainty is known to be very hard

in general, this does not mean that all such problem are hard. We desire some way
of talking about the "space" of geometrical planning problems, and defining a kind

of measure on that space. Then perhaps one could determine whether the problems
which are hard for exponential time are of "measure zero", for example.

S.

15.2.5 Provably Good Approximate Algorithms

Concomitant with our conjecture about the distribution of geometrical prob-

lems is the observation that the intractability of exact solution does not preclude
the existence of fast approximate algorithms. It would be very useful to develop

such algorithms and show that they are provably good approximations.

15.2.6 Different Complexity Measures

In developing good average-time algorithms for EDR planning, it would be

useful to measure the complexity in the size of the output. For example, while it
is true that the forward projection in 3D can have exponential size, it seems that
there are many problems in which it is much smaller. Thus it would seem natural

to measure the complexity of planning in 3D by the complexity of the forward
projection.

15.2.7 Hardness of EDR vs. Guaranteed Planning

Since the EDR theory contains [LMT] as a subtheory, it appears a priori at least
as hard to decide. However, consider the following "intuitionist" argument: many
"hard" problems, requiring exponential-length guaranteed plans that take doubly-

exponential time to generate, may admit "short" EDR plans that can be generated
easily. For example, the peg-in-hole insertion strategy with model error, or the
gear-meshing plan, may require very long plans if the plans must be guaranteed.

However, we can find 2-step EDR plans for these problems. This intuition-which
is a heuristic claim, so the reader is advised to proceed with caution--should be
verified or disproven.

261

%11

15.2.8 Weak EDR Theory

The weak EDR theory, while still in its infancy, has already yielded some
interesting results and a fairly clean mathematical framework for studying multi-
step strategies. The key idea behind the weak EDR theory is: given a collection
of goals { G# } (possibly including H), we consider all unions of the subcollections
to get some measure of weakest recognizability. This is perhaps the most exciting
theoretical area for future work.

As an immediate goal, the linking conditions should be extended for time-
indexed forward projections.

15.2.9 Dynamic Model

The dynamic model in the EDR theory should be tested, by trying out the
EDR plans using actual robots. The dynamic model should also be extended, to
incorporate second-order dynamics, impact, and deformation.

15.2.10 Computing Projection Sets

When rotations and compliant motion are allowed, we do not know of exact
algorithms, even in principle, for computing projection sets. For example, the
computation of forward projections is not immediately decidable within the theory
of real closed fields. This is because the physics of motion are essentially specified
"differentially," that is, by a mapping that sends a configuration x E g and a
commanded motion 9 E S' (where n + 1 is the dimension of C), to a cone B,(x, 9)
in the tangent space: 1

g xS n -+ cones in T9

Thus we have a differential specification of the possible motions B,(x, 9) at each
point x. The cones at each point specify a parametric family of vector fields-a field

* of cones to be precise. The integral curves for this family, however, may not be al-
gebraic in general. Good approximate algorithms are needed to construct bounding
algebraic envelopes about the image of this family of curves. For example, assuming
that an integral curve has a power series, it is possible to construct a recurrence
relation for the coefficients of the series. They can be generated deterministically
to the accuracy desired. Randy Brost2 has investigated other numerical techniques
for constructing integral curves corresponsing to trajectories in the forward pro-
jection. This is an interesting area for future research. In particular, it could be

1The space of "cones in TG" can be formalized as an appropriate tensor bundle over G.
2 [Personal Communication].

262

WY %

applied to the "full" 4-dimensional gear meshing problem where a commanded pure
rotation of the gripped gear could induce translations or rotations of either gear.
Such algorithms might also be applied to compute projection sets under different
dynamics.

15.2.11 Higher-Level Primitives

The "primitives" in the EDR and [LMT,E] theories are somewhat low-level-
they consist of commanded generalized damper motions. While it is easy to describe
such motions, their effects can be complex. It would be useful to develop a theory

of planning with higher-level primitives that was still geometrical in character.

15.2.12 Planning Paradigms

Different planning paradigms for EDR planning should be explored. LIMITED

is a forward-chaining planner. [Brost] is developing a backchaining EDR planner.
0 It would be interesting to integrate and compare these techniques.

15.2.13 Functional vs. Geometrical Descriptions of Goals

Some of the greatest and most interesting unsolved problems in geometrical
robotics lie in the interaction of functional and geometrical descriptions of goals. In
particular, we would like to devise algorithms for computing a geometrical goal re-
gion given a functional description-for example, a quantified difference equation-
for the desired behavior in the goal state. Conversely, we would like to be able to

infer a functional description of the goal from its geometrical aspects. The latter
would be useful in automatically generating termination predicates to recognize the

goal.

I believe that EDR is an exciting and fruitful area for future research. Many
* of the directions above could be taken as criticisms of the theory-for example,

that it is too slow, or may require exhaustive search. However, I would rather view
these as criticisms not of the EDR theory, but rather of the state of the art in EDR

. implementation, that is LIMITED. In particular, if five years ago one had surveyed
researchers in robotics and asked them what to do about model error and EDR,
I believe that the general response would have been "I don't know; it's a good

problem." Now at least we have a systematic theory of model error and EDR, and
are faced with the test of reducing it to practice.

263

% %% %

APPENDICES

§A.1. A Note On Geometry

Our definitions of phase space, and phase-space goals have been primarily set-
theoretic. These sets have considerable additional structure, which is a good thing,
for otherwise there would be no hope of computing them. The geometry of these
regions is accessible by viewing phase space as the tangent bundle to (gene-alized)
configuration space. This gives it structure both as a differentiable manifold and
a vector bundle; 7r is the canonical covering map. The moving object's moment of
inertia tensor defines a field of inner products on the tangent bundle, providing a
natural choice for a Riemannian metric. For example, to see that Z(H,) is "well-
behaved", observe that it is the image of a zero-section (see below) of the tangent
bundle, and so it is an embedding of H.. This geometric point of view is crucial
to a computational analysis; it is developed in more detail here, and earlier in
[Erdmann].

Notation:

Some readers may still wish to continue thinking of the tangent bundle to
configuration space as "Position-space x Velocity-space." This is set-theoretically
correct, although it ignores its topological, algebraic, differential, and geometric
structure. Set theoretically, the tangent space T, at a configuration x may be
thought of as the collection of all velocities (or forces) "at" a configuration x. That
is, the tangent space at x is the cylinder 7r-'(x) endowed with a vector space
structure. It has the same dimension as the (generalized) configuration space. The
tangent bundle is set-theoretically the disjoint union of all tangent spaces. It has
twice the dimension of the configuration space. If C is a configuration space and
TC its tangent bundle, a section of the tangent bundle is a map s : C .- TC such
that 7r o s is the identity on C. Of particular interest is the zero section, which sends
a configuration to the distinguished zero-velocity in its cylinder.

§A.2. A Formal Review of Pre-Images

A motion strategy is a commanded velocity together with a termination predi-
cate which monitors the sensors and decides when the motion has achieved the goal.
The actual path followed depends on the control uncertainty, but we require that it
satisfy generalized damper dynamics (see (4), below). Given a measured position
p in configuration space, a set R, and a collection of goals { G# }, [LMT] define
S(p , R, { Gq }) to be the set of all commanded velocities vo such that the termina-

264

1P 1

mom -----------------f w. Wb wr wr . -lr X_ 'r. - wr g w -4,,

tion predicate, knowing the initial measured position po* corresponds to an actual
i' position p in R, is guaranteed to signal success. We denote the position sensing

error ball about p by Bep(p). A pre-image of a collection of goals { G# } relative to
a set R is the set

PR({G }) = {pE R I Vp; E B,,(p),S(p;,R,IGo}) # 0},

that is, the set of all positions p, such that, for all measured positions po consistent
with p, there is some commanded control velocity vo such that the termination
predicate is guaranteed to signal success.

Analogously, define the directional pre-image with respect to a nominal com-
manded velocity v; by

PR,e({ G, }) = { p E R I Vp; E Bp(p), v; E S(p , R, { G, }) }.

The directional pre-image is the set of points which are guaranteed to recogniz-
, ably enter the goal under a particular commanded velocity ve. The weak preimage

is the set of points which could possibly enter the goal recognizably, given fortuitous
sensing and control events.

The backprojection of a goal (with respect to a commanded velocity v;) consists
of those points guaranteed to enter the goal. Recognizability of the entry plays no
role.

The forward projection of a region R (with respect to v;) is the set of positions
and velocities (considered as ordered pairs) which are possibly reachable from R

under v;.

For a comprehensive account, see [LMT,E]. For convenience, we summarize
the notation here. While historically the subscript 0 has been used to indicate the
"angular direction" of a commanded motion, we will employ it as an arbitrary index
for motion strategies, commanded velocities, and termination predicates.

Symbol Table:
vo nominal commanded velocity.

vo actual commanded velocity.

v actual velocity.

v* sensed velocity.

p actual position.

p* sensed position.

Bc(vo) control uncertainty.

B,,(v) velocity sensing uncertainty.
Bep(p) position sensing uncertainty.

F,9(R) forward projection of R for v = vq.
26.

"' " 265

*% - . .., .-.-% " • -. ' " o * .-.• .-.-, . - . j % -.-.- -. .. - -.. -., % ' , - . .

Fe(R) natural projection 7rF into C-space.

Be(G) directional backprojection of G under v; = ve.

PR({ G,3 }) non-directional pre-image.

PR,e({ G6 }) directional pre-image.

PR({ Gq }) non-directional weak pre-image.

PR,e({ G, }) directional weak pre-image.

For notational felicity, we will define Be({ G, H }) = Be(G U H).

§A.3. On the Geometry and Physics of Generalized Configuration
Space

We now discuss the geometry and physics of generalized configuration space
somewhat more formally. Generalized Configuration Space is a smooth manifold.
Intrinsically it is not different from the configuration spaces considered in, for ex-
ample, [LMT, E, D, C]. We must define a system of dynamics for generalized config-
uration space in order to define motions. Furthermore, we must define how sensing
generalizes.

Let C be a smooth configuration space. Let J be an arbitrary set which will

index the possible configuration space environments. Generalized Configuration
Space is Q = C x J, and a particular "world" is simply C x { a } for a E J. Thus
we let { C1, }a1J be a set of configuration spaces, each containing configuration
space obstacles. The ambient space for each C, is some canonical C, which is the
configuration space for the degrees of freedom of the moving object. Q is simply
the natural product representing the ambient space of the disjoint union of the C,, .
There is no constraint that J be finite or even countable. Now, assume that J is also
a smooth manifold (with boundary), although as we shall see, this is not a serious
restriction. We wish to define a "physics" on Q, that is, a set of laws that motions
in generalized configuration space must obey. This physics will be expressed as a
set of constraints on uncertainties and trajectories in the tangent bundle TG. Write
" = (x, a) E g. A particular tangent space will be written TT- = T,, = T,,,. We

will use the convention that the analogs of mathematical objects in the pre-image
framework will be written with a bar in the model error framework. Thus a velocity
in T, 0, will be written V" = (v, dc,) where v E TIC.

(1) There is infinite position sensing uncertainty in J. This means that we will
define the generalized position uncertainty as Bep(') = Bep(x) x J.

(2) Motions are possible in Q, but any motion must stay within one slice of
9, say C x { a0 }. (We call this an ao-slice of 9). ao is the actual position in

J. If 0 E T ,oJ denotes the zero velocity in the tangent space to J at ao. then]
we can define the generalized velocity sensing uncertainty Bev() = Bev(v) Y { 0 }.
Analogously, the generalized control uncertainty is Bec(U3*) Bec(v) {< 0 }. These

266

i 2:|-

~~N-

definitions ensure that all sensed and commanded velocities are tangent to C and

have zero component along J.
(3) Define a generalized trajectory : [0, oo) -- T9 by T(t) = (;p(t),;F,(t))

= (tp(t), a(t), ct.(t), d1 (t)), where (a(t), dc(t)) E TJ.
_ .(4) Let 7 E T9 be a force tangent to generalized configuration space. Then

-. f must satisfy the damper equation f = B(F - -). In truth, this is a generalized
., generalized damper constraint. B must vary smoothly, that is, B is a smooth tensor

field on Q. In practice, we constrain B to be diagonal on each tangent space so that
it cannot cross-couple TC and TJ.

(5) Let 5 = W. and Y = V and V must be related via the integrability
constraint

,(t) = P(O) + fo v(t)dt.

(6) 'go E ec(VYO). That is, the generalized actual commanded velocity must be
consistent with the error bounds on the generalized nominal commanded velocity.

If 'P obeys these constraints (1-6) we say it is a trajectory satisfying the damper
equation with uncertainty relative to a commanded velocity v . Such a trajectory
is constrained to have a(t) = ao and d(t) = 0 for all t. The latter implies that the
image of any "lies in the submanifold TC x (Jx {O})-TC x J. This is why
we can think of TQ, the phase space of Q, as being TC x J instead of TC x TJ.3

It also suggests that we may relax the constraint that J be smooth.
[Erdmann] generalizes Euclidean friction cones to arbitrary smooth C. The

generalized friction cones embed in TC. Thus friction cones embed naturally in
generalized configuration space. Of course, they have no non-zero component in
TJ.

In this thesis, when there is no possibility of confusion we have dropped the
bar notation and assume that in generalized configuration space all quantities, un-
certainty balls, trajectories, etc., are barred, i.e., generalized. We have referred to
generalized configuration space as g.

The definitions and results for pre-images and backprojections [LMT,E] in C-
space generalize mutatis mutandis to ! endowed with this physics. Thus this frame-
work reduces the guaranteed motion strategy planning problem with model error
to computing pre-images in a somewhat more complicated, and higher-dimensional
configuration space.

§A.4. Derivation of the Non-Holonomic Constraints for Pushing

The previous discussion assumed that motion across J was impossible. That is,

3 This is only acceptable when no motion across J is possible! See §A.4.

267

.. '.5--- -'-- . -v-.,-.- 5----5-.-." ' " '.'-- **, . .,-s, -b~' .. ,.",,"4,-j--,N- j(,o.; .;.'. - .. ',, '."

all motion is confined to one a-slice of generalized configuration space. In example
(1), this is equivalent to the axiom that B does not move or deform under an applied
force. Such an axiom makes sense for applications where B is indeed immovable,
for example, if A and B are machined tabs of a connected metal part. However,
suppose that B is a block that can slide on the table. See fig. H1.17. Then an applied
force on the surface of the block can cause the block to slide. This corresponds to
motion in J. In general, the effect of an applied force will be a motion which slides
or sticks on the surface of B, and which causes B to slide or stick on the table. This
corresponds to a coupled motion in both C and J. When the motion maintains
contact, it is tangent to a surface S in generalized configuration space.

Our goal is to generalize the description of the physics of g to permit a rigorous
account of such motions. This model can then be employed by an automated
planner. Such a planner could construct either Guaranteed or EDR strategies whose
primitives were gross motions, compliant motions, and pushing motions.

First, we must determine what reaction forces are in generalized configuration
space. By this we mean the following. Surfaces in configuration space share many
properties with real-space surfaces. When pushed on, they push back. They have a
normal in configuration space, and in the absence of friction can exert forces only in
that normal direction. In general the configuration space normal is different from
the real-space normal; see [E]. Furthermore, [E] developed a configuration space
analogue of the classical Coulomb friction cone of Cartesian space. It defines the
range of reaction forces the surface can exert, and may be employed to predict
reaction forces, given a applied force. In addition, given either Newtonian or gener-

* alized damper dynamics, the configuration space friction cone can be used to predict
whether sticking will occur on a surface, given a cone of control velocity uncertainty.
Under damper dynamics, the computation at a point is especially simple: sticking
can occur when the intersection of the negative velocity cone and the friction cone
is non-trivial.

We wish to extend these methods to generalized configuration space. Then,
given a cone of applied forces as in fig. 11.17, we can predict the cone of resulting
motions in G. That is, we can predict the motion along the surface of B, and
the motion of B on the table. In particular, given a control uncertainty cone, we
can compute whether sticking occurs on the surface S in generalized configuration
space.

In this analysis, we will consider a force exerted by the robot on an object
B. This corresponds to an application of force on a surface S in !. The analysis
will apply to arbitrary smooth C, J, and S, for an arbitrary rigid object B whose
configuration space is J. The reader may imagine B and S as usual in example (1).
In example (1), however, the configuration space of B is one-dimensional. To make
the example more interesting, let us suppose that B is free to translate and rotate

268

w0

on a planar table. So C is K2 as before, but J is R2 x S 1.

We must determine:

, What is the normal to a surface S in generalized configuration space?

* What is the analogue of the friction cone in generalized configuration space?

* What are the applied forces which cause sticking at a point on S? What is
their geometric interpretation and computation?

& How may reaction forces be computed geometrically, using the generalized fric-
tion cone in generalized configuration space?

Our analysis is applicable under the following assumption: We must have per-
fect knowledge of the centers of friction of B and the robot. To satisfy this as-
sumption, it is sufficient to assume that all (real-space) contacts consist of a finite
number of points. For example, we might model the contact of B on a planar table
by the intersection of four one-point contacts. Alternatively, the centers of friction

*1., are known when the pressure distributions are known precisely. In the more general
case where the pressure distribution is not known precisely, then the more gen-

* •eral theory of pushing described by [Mason, 82] must be employed. More research
is needed to extend this more restricted theory of pushing to the case where the
centers of friction are not known precisely. One possible solution is to introduce
uncertainty in the center of friction as a model error parameter in J.

This discussion represents work in progress. In particular, the method de-
scribed for the computation of reaction forces is meant to be illustrative of the
techniques that an EDR planner would require, if it were to competently plan
pushing motions. I hope that a simpler algorithm can be found before a practical

planner is constructed.

Normals to Surfaces in Generalized Configuration Space

Let C and J be the configuration spaces of the robot and of the block B, respectively.
Assume that the reference points are chosen to lie at the centers of mass. Typical
configuration spaces we will consider are the two and three dimensional groups of
Euclidean motions, R2 x S 1 and R' x S0(3). The definition of normals in the
tangent spaces to these configuration spaces depends on the inner product. There
is a natural choice for the Riemannian metric; see [Arnold, Abraham and Marsden,
E].

The moment of inertia tensor of the robot defines a field of inner products

on C. On a tangent space TrC, write the inner product as (,)z. This choice
of inner product is "natural" in the following sense: The Riemannian metric i- a
quadratic form which computes the correct kinetic energy of the robot moving with

generalized velocity v at configuration x:

269

0oo

1"4"

E = -(v, v), v E TC.
2

A Riemannian metric (., "), on the tangent space TaJ is defined in the same
way. The inner products may be combined by direct sum to define an inner product
on T C x T, J. We can visualize this as follows. Since the moment of inertia
operators are symmetric 2-tensors, we can view them as square matrices 4_ and
IQ,,. In principal axis coordinates, for example, both will be diagonal matrices with
unit entries for the Cartesian dimensions, and the squares of the radii of gyration
in the rotational coordinates. The operation of 4r on two velocity vectors v, u in

T_ C is defined by

(v, u) = vZ 4u.

Write Y = (x, a) as usual. Let wl, w2 be in Ty--. So the inner product on T-
is defined by

(WIW 2)7=w W1 4 ,o (,)

Thus the direct sum of the inner products defines a field of inner products on
!9. Since the reference points are at the centers of mass, the kinetic energies of the
robot and of B simply add without cross-coupling. Therefore (*) defines the natural
Riemannian metric on generalized configuration space, since it describes the kinetic
energy of the system.

Now, a tangent vector (vC, vj) in T-- corresponds to a (generalized) velocity
of v, of the robot and v3 of the object B. Generalized damper dynamics permits
an identification of forces and velocities. Thus the pair (fe, fj) with

7:: fc E T.,C,

:.,,,.., fh E T J

corresponds to a generalized force of fc applied at the center of mass of the robot,
and a generalized force of f3 applied at the center of mass of B.

Note that the inner product (*) defines the normal space to the surface S in
generalized configuration space.' See fig. 11.18. The normal, in general, can be
transverse to J. Hence S can exert reaction forces across J even when the applied

-" force lies exclusively in T C. In the figure, this implies that pushing on the side of B
, results in a reaction force across J, causing B to slide. In generalized configuration

space this is simply viewed as applying a force to the surface S, which exerts a
reaction force across J. Since the resultant force is across J, the motion in g will
be in that direction, tangent to S.

4This is independent of the choice of generalized damper or Newtonian dynamics.

270
' ,

0%

. . Z J . o .- ., -- ... - -. . < -

I <-;:-1 :*,:A

Construction of the Sticking Cone

We now derive a geometrical object called the sticking cone. It represents the cone
of forces (fc, fi) that can cause sticking on a surface in g. Under generalized damper
dynamics, the sticking cone represents the commanded velocities that can result in
sticking.

Henceforth, all forces are generalized forces unless otherwise indicated. Keeping
the notation above, suppose the generalized force (fc, fj) is applied at configuraticn
F = (x, a), which lies on surface S in generalized configuration space. Now, it is
clear that f, acts on B as well as on the robot.' Assume for discussion that fc
contains no torque components. Then the effect of fc on B is both fc acting at
the center of mass of B, plus the torque induced on B by f,. Let r, be the radius
vector from the center of mass of B to the point of application of f, in real space.
Then the effect of fc on B can be written6

f*= fh + r,, x fc E T, J

The torque component of f* must also be normalized relative to the inner product

on T, J; this is not indicated above.
Now, of course it is also true that fj induces an force on the robot. For example,

if in example (1) the block B is pushed at its center of mass, then a force can be
exerted on the robot when the robot is in contact with B. The induced force
contributes to the reaction force of B on the robot.

Let fr,, denote the reaction force of B on the robot; it lies in TIC. Let fr,j
denote the reaction force of the table on B; it lies in Tc J. The force balance

equations for static equilibrium are

fc + fr,c = 0

f + f* + frj = 0.

Now, let K, be the configuration space friction cone [E] in T,C, and K,, be the
configuration space friction cone in TQJ.' The conditions for static equilibrium are

I •then expressible as

-fc E K (**)
:.-:-: -fj - f ' E IJr

5 0f course, this is only true when the robot and B are in contact, i.e, 7 E S.

.Under quasi-static assumptions.
'We do not assume that the center of friction is at the center of mass. if this is not
the case, however, the friction cone must be placed at the center of friction, r id then
r,sloved relative to the center of mass by adding the resultant torques.

271

. ., ; ' ; -. - - -. . -- .' : -' -. -. - -.- -.-.- , .- , , . ,. ,,%

Thus it is clear that the range of reaction forces that the surface S can exert
is exactly the direct sum of the two friction cones,

KZ E K.
which is a cone in T79.

We are now prepared to construct the sticking cone. Informally, the idea in-
volves twisting and tilting the friction cone in TaJ as a function of fc. The amount
of the twist and tilt is determined by the force f,*. The tilted friction cone takes
into account the "internal" force fc*, and admits a geometrical calculation of sticking
that considers only the applied force (fc, fj).

We can rewrite the sticking conditions under static equilibrium (**) as:

-fo E K,

-fj E K. +{ f1 ,

where the translation operation + is defined by V + { w} = { v + wj V E V }.
(t) defines a cone of forces in the tangent space to generalized configuration

space at T. We may write it ass

C= U {-fc}E(K,+{f}).
--f EK

For example, in the case with no torque, f* = fc.
The cone of all forces (f,, fj) satisfying (f) has the following geometrical in-

terpretation. The force f,* causes a translation of the friction cone in TJ. It
parameterizes a family of cones in the tangent space to J. The union of this family
defines a range of applied forces (fe, fj) that can cause sticking at Y. For example,
consider fig. 11.19. Here we take the configuration spaces of the robot and of B to
be cartesian planes (R'). The friction cone in generalized configuration space will
then be four-dimensional. This is hard to draw; we have selected a fixed, negative
normal component for fj. The 3D force space at " represents the product of the 2D
forces that can be exerted by the robot on the surface of B, with the 1D tangential

* •forces that can be applied at the center of mass of B. An applied force (fc, fj) in
, the cone in fig. 11.19 represents a combination of forces that causes no motion in

•, that is, neither sliding on the surface of B, nor of B on the table. Note that the
cone in Q is skewed out of the embedded tangent space to C at x. This is because
when a force is applied in the friction cone K, the block B can slide unless an

*1 opposing force is exerted tangentially at the center of mass of B.
There are several points of interest. Note that the new cone defined by (t),

which we will denote K, changes from point to point when torques are permitted.
This is because the radius vector changes from point to point. Therefore the torque

8 e denotes the direct sum.

272

< % I

!f~fl- ;k?'

components of the generalized force f* will translate the friction cone in TJ by
different amounts as the vector r, to the center of mass of B varies. This effect is
similar to the way that the Erdmannian friction cone changes as the contact moves
in rotation space [E]. However, in generalized configuration space it changes even
under pure translation.

.4 We can now specify a geometrical computation to determine when sticking
occurs at T, assuming generalized damper dynamics: Simply intersect the negative
velocity control uncertainty cone -Bec(v;) with 1C. If the intersection is trivial, then

* sticking cannot occur. If the intersection is non-trivial, then sticking can occur. If
the negative velocity cone lies inside AC, then sticking must occur. See fig. 11.19.
Assume it is impossible to apply force at the center of mass of B. Therefore, the
velocity cone is two dimensional and lies entirely in the tangent space to C at x; it
has no J component. This two-dimensional cone is intersected with the 3D cone)c
to determine whether sticking is possible at T.

This shows that the computation to determine whether sticking is possible at
a point reduces to simple geometric cone intersection.

Computation of Reaction Forces

We now provide a geometrical method for the computation of reaction forces in

Q. That is, given an applied force (fc, fj), we shov how to compute the reaction
forces and hence the resulting motion. Such an algorithm is required by a planner
since it is necessary to predict the effect of a commanded force on the motion of the
robot and B. We will assume Newtonian mechanics in this section, for the following

reasons:
0 It is not clear that the interaction of B on the table9 surface can be modeled

accurately by a damper.
0 Under generalized damper dynamics, it is not clear whether the robot velocity

induced by a force f, should be relative to the object B on which it slides, or
relative to some global coordinate frame.

* In second-order systems, accelerating reference frames can introduce fictitious
0forces. Correspondingly, under generalized damper dynamics, it seems that

reference frames moving at constant velocity should also introduce fictitious
forces.

It remains to give a principled account of these issues; this is a fruitful area for
future research.

The prediction of reaction forces under general dynamic conditions is compli-
cated by the fact that the object B and the robot may accelerate under the resliltant

-I.

9We will use the "table" as the name for the surface B is in contact with, %-iI the

understanding that the surface is arbitrary.

273

0
.> - -€?'..t';

"
'' ,.o ' . ' .,,'..-.':',': * ,,5 ° ,, ' " '."-.''o. "'' ,"" , . ," '-" . ."-. -"-. ."-" ."-" "'"-

r'

force. This means that the computation of reaction forces cannot be reduced to a
simple projection onto the friction cone. The reason for this is that the projection
must be done in an inertial frame, fixed on the object which exerts the reaction
force. That is, the applied force must be expressed in a frame of reference which is
non-accelerating relative to the "bottom" object which is being "slid upon."

For example, consider the case where the normal accelerations are zero. That is,
assume that contact of the robot on B, and of B on the table are both maintained.
We fix a reference frame L on B. Then the reaction force of B on the robot
may be found by projecting the effective applied force in L onto the Erdmannian
friction cone [E]. However, the effective applied force is not known a priori: the
fictitious force due to the acceleration of B contributes to it; this acceleration is
also an unknown. The projection relation however, still holds. In general, it adds
a quadric constraint into the equations of motion. The simultaneous solution of
these equations yields the reaction force and resultant acceleration. (The global
coordinate system is a non-inertial frame for the table).

To summarize, we can compute the reaction forces by writing down the equa-
tions of motion of the robot and B. Then we add the constraints from the projection

relations expressed in inertial frames. Their simultaneous satisfaction yields the re-
action forces.

Let us derive the reaction forces for the case where C and J are both R2 x S 1 .

The analysis follows [E], and is a generalization thereof. We will assume one-point
contacts between the robot and B, and between B and the table. Furthermore, we
assume that neither contact is broken. Centripital accelerations and coriolis forces
are not considered. This is a reasonable assumption under quasi-static conditions,
or when the robot and B are only rotating slowly.

We will use the following notation:

The radii of gyration of the robot and B, respectively, are Pc and PJ"

The masses of the robot and B, respectively, are m, and in 2 .

The generalized applied force in C is f. = (ff, f4cY, fq). That is, the applied
force is (ff, fc) and the applied torque is rc = pc fcq.

The generalized applied force in J is fj = (f7,ff,f). That is, the applied
force is (ffj, fF) and the applied torque is r = qL.i J T I T

The configuration space normal in C is n. = (n', ny, n q). The unit real space
normal is n n, ny). ,

< The configuration space normal in J is nj = (nf, , nq h uiea pc

normal is n9 = (n, nj).
The magnitude of the normal reaction force at the contact point between the

robot and B is f,,c.

The magnitude of the normal reaction force at the contact point between B

and the table is f,,.

274

I,.|.0 -.

, ,- - i"i ~ulm " litllli illMt tmnmmmm

r, is the vector from the point of contact of the robot on B to the reference
point of the robot.

rj is the vector from the point of contact of B on the table to the reference
point of B.

In the absence of friction, the equations of motion are therefore

f,,n + f1 = mca'C
f.cy + fcy m~ay

f.,.,q + 7c = mCP 2c

-f,,n + fTz + f,,jf = mjaF

-fn + fj' + f,2,n = mja
f,,,cIrx n'l + -rj + fj =mjpjoaj.

In the presence of friction, there also exist tangential reaction forces. Let their
magnitudes be fc' and &I The are subject to the restrictions

0 <5 V!~ 1 !51Cf
0 < fl <5 ifj

Observe that the sliding tangents in real space are (ny, -n'~) and (ny, -ny).
As in [E], let

=nr' + nyry

and

Vq= nxrz + n/r

Then in the presence of friction, the equations of motion are

fn'+ fll + fc -~~

fnc"- fcn + fg - mcay
fn + fcv q + irc -mcp 2 ac

(R1)

fi f~iMjAj

-nn'- f,'ny + f j + fnn + fn mia'i
*-f, ny + fcnz' + fY + fnn - fn mj

rj Xf.0l + Ti + fn,jn + fv - 2j~,

where

= n,cn~ + fill,j

275

In eq. (Ri), we have indicated with braces which terms correspond to which
generalized applied forces and accelerations. They must be normalized relative to
the inner product; this is accomplished by dividing the torque equations by pc and
pj, respectively. For example, the torque component of fr is of course actually
f q = -L-r,. M. and Mj are generalized mass matrices, combining the mass and the

PC

"0- moment of inertia of the moving objects.
We will consider the case where contact is not broken. That is, the normal

accelerations are zero. Henceforth, we will adopt the standard dot notation for the
inner product on the tangent space. Writing this out,

Aj nj = 0. (R2)
Now, attach an inertial reference frame L to B at the reference point. L

accelerates by Aj. The robot accelerates at A,; therefore in L it accelerates at "the
sum 1° of" A, and -Aj. The acceleration of L generates a fictitious force h; we can
write the effective applied force in C relative to L by adding the ficticious force h

arising from the acceleration of L:

ngna hfc = fc + h (R3a)

In general, h will be complicated, since L is a rotating coordinate system. It is
conceptually simple, however. For example, in the case of no rotations, we simply
have h = -MAj.

The reaction force fr,0 may be found by projecting the effective applied force

fc onto the Erdmannian friction cone K.. The global reference frame serves as a
non-inertial frame for the table; hence the effective applied force on B is simply

J J fj-f. (R3b)
The reaction force frj may be found by projecting the effective applied force

f onto the Erdmannian friction cone K,,.
J

[E] derives two canonical tangent vectors tr and t-. t, is the tangent in the
* direction of pure rotation about the point of contact. It is normal to the plane of

the Erdmannian friction cone. The reaction force may be found by projecting the
effective applied force along tr onto the plane of the friction cone. If the projection

lies inside the friction cone, then the projection is the reaction force. If not, then we
must project perpendicularly along t', in the plane, onto the edge of the friction
cone. The second projection, then, is the reaction force.

Now, let t, and t., be two orthogonal vectors in the plaie of K., such that
t, = -ti. Then the projection onto the plane of K. is given by

1 Before adding the generalized forces, the angular accelerations must be resolved relative
to the different rotating coordinate systems.

276

4ON

U,

f. -- -(f. tl)tl (f. t 2)t 2 . (R4)

This yields two cases. In the first, the projection lies in the friction cone, so

f. = f.. (R5)
In the second, we must project again. That is, fr,c is the projection of L: along t-
onto the boundary of K_. In the latter case, we can express the second projection in
local (t 1 , t 2) coordinates as follows. Write ft. = -(fi, f2) in local coordinates. Call
the projection p = (pi,p2). Let e = (el,e 2) be a unit vector along the edge of the
friction cone K., expressed in local coordinates. We obtain a quadric constraint,

P2 = f2
(R6)

Piei~= e2 =.Plel + P2e2 1 +7p

Analogously, we have that frj is related to fj by a projection in T, onto the
plane of K,. Thus it is possible to derive three more constraints (R4'), (R5'), and
(R6') in precisely the same manner.

4The (R) equations may then be solved simultaneously to predict the reaction
forces and resulting motion. 1 In considering this analysis, note the crucial role
played by the geometrical projections onto the friction cone. It remains to gener-
alize the analysis to consider multiple points of contact, breaking contact, coriolis
forces, and centripital accelerations. I expect that, given the tools developed above,
the generalization should follow [E] straightforwardly. However, I also expect the
resulting system of constraint equations to remain fairly complicated, as illustrated

4above. Since the planner must solve this system, a simpler method for computing
reaction forces would be desirable. The techniques above require algebraic manip-
ulation as well as geometrical computation. There may be simplifying assumptions
which facilitate the computation. This direction must be explored in order to build
a practical planning system.

Quasi-Static Analysis

One simplifying approach is quasi-static analysis. Such an analysis would proceed
as follows. First, all accelerations in equations (RI) could be set to zero. The
reaction force fr,, can be in one of three states: on the "left" edge of Kz, inside K.,
or on the "right" edge of K.. The magnitude of f,,, can be determined from the
normal component of f., since the accelerations are zero. Each state corresponds
to different impending motions in the direction of the force imballance. (It could
also correspond to sticking on the surface of B). Similarly, there are three possible

'Of coirse, motion ambiguities, as in [E], are still possible.

4' 277

states for frj, yielding six qualitative states altogether. One envisions an algorithm
as follows. The algorithm hypothesizes a state, say, that fr,c lies on the left edge of
K,. This means that it can be found from f. via the one or two step Erdmannian
projection given in (R4-R6). Note that there are no fictitious forces, since the
accelerations are zero; hence, for example, in the easy case we simply have

fr,c = - tl)tl - (f." t 2)t 2 . (H4)

, Next the algorithm makes a hypothesis about the state of the reaction force frj.
This results in one or more hypothesis equations like (H4). If equations (R1) and

the hypothesis equations are consistent, then the hypothesized reaction forces areq.
4

possible under quasi-static assumptions. Furthermore, associated with the hypoth-
esized reaction forces, there is a (set of) impending motions, corresponding to the
resultant of the force imbalance. These impending motions may be used to predict
the effects of applied forces under quasi-static assumptions.

The advantage of this method may lie not only in its simplicity, but in the fact
that it gives a partition of force space into impending motion regions. Forces applied

* in a given motion region will result in motions in a particular (set of) direction(s).
Such a technique could be very useful in a planner for pushing operations. The
investigation of simplifying assumptions such as quasi-static analysis is a fruitful
direction for further research.

Application to Planning

.: Suppose that it is impossible to exert forces at the center of mass of B. Thus
the control velocity uncertainty cones lies entirely in the tangent spaces to C, and
contain no component across J. Any motion of B must be effected by the transferred
pushing force. Under generalized damper dynamics, the tools above are sufficient
to characterize all possible resulting motions from a cone of applied forces. Thus we
can define forward projections, backprojections, and preimages in g when motion
across J due to pushing is possible. Motion across J is only posible on certain

* •surfaces; it is impossible to move across J in free-space.

Imagine a backchaining planner in a generalized configuration space endowed
with this physics. Such a planner could compute motion strategies which may be
characterized as follows:
, In free space, or on surfaces generated by immovable objects, all differential

motions lie within one a-slice.
* Along surfaces generated by objects that can be pushed, the differential motions

are tangent to the surface in 1, and may move across J as well as C.

The resulting motion strategy consists of a sequence of gross motions, compliant
motions, and pushing motions.

278

-%.r W"rQ -rrJ e_Ib

Generalized Control Uncertainty as a Non-holonomic Constraint

Suppose, as above, it is impossible to exert forces at the center of mass of B, so
the generalized control uncertainty in Q has no component in the tangent space to
J. (See fig. 11.19.) Consider example (1) when B has three degrees of freedom and
the robot has two. While the tangent space to Q is five dimensional, note that in
general, the forward projection of a point will be of lower dimension. For example,
from a point in free space, the forward projection will lie in a 2D slice of Q. From
a point on a surface in Q, the forward projection will typically lie on the surface.

This is a subtle and deep point. The constraints in most motion planning
problems [Lozano-Prez, SS, D, E, C] are constraints on the degrees of freedom of
the moving objects. Such constraints are called holonomic constraints; they can
be expressed as constraint surfaces in the configuration space. However, the gen-
eralized control uncertainty and the characterization of friction express constraints
not on the degrees of freedom of the object, but on its differential motions. Infor-
mally, this is clear since in fig. 11.19, B,,(v;) is 2D, while the tangent space is 5D.
Such constraints are called non-holonomic constraints; they can not in general be
expressed as constraint surfaces in the configuration space. They can be character-
ized as constraints in the tangent bundle, as in the sticking computation employing
C. Computing backprojections under non-holonomic constraints requires enforc-

ing the differential motion constraints as well as the usual holonomic constraints
imposed by surfaces in generalized configuration space.

§A.5. A More Formal Summary of the Construction of H

- We now summarize the construction of phase space EDR regions somewhat
more formally. We construct H as follows. Given a motion strategy 0, a goal
region G, and a start region R in generalized configuration space , we construct:

F = Fo(R)

P = PF,9(G)
P = PF,e(G)

H. = { x E 5 - P I sticking can occur at x }
Z(Ho) = {(x,v) E r -'(H.) I v = 0}

H = 7r-'(F - P) U Z(H).

The forward projection F is in position space, not phase space. The map Z is
the zero section of generalized configuration space.

Now, given a collection of goals { G,3 } we denote their backprojection under
a commanded velocity v* by B9({ G,3 }). Note this is equal to Bg(U,3 GO), since

279

.Z

backprojections do not address recognizability. From the construction of H, we

have

Be({ G,irH }) D R. (7)

(7) is a reachability consequence only. To form an EDR strategy using ft, we must

add a recognizability constraint analogou, to eq. (3). We allow simple goals in
phase space; that is, we permit goals in phase space as arguments to PR,o. The

recognizability constraint is then

PR,e({ ir (G }) = R. (3a)

As written, (3a) is a reachability and recognizability constraint. But since
reachability (7) follows from the construction of H, (3a) adds exactly recognizability
to the construction.

More generally, we could replace G throughout by a collection of goals { G3 }.

(3a) then becomes the obvious

PR,G({ 7r'(G) } U { H }) = R.

§A.6. Definition-of an Approximate Push-Forward

Here is the formal definition of one kind of push-forward. (There are other
kinds). This push-forward is obtained by "lying" to the termination predicate about
where the motion started. It captures the intuitive notion of "trying the strategy

anyway, even if we're not guaranteed to be in the right initial region."

Suppose we have a motion 9 from a region R which achieves some set of goals
{ G, }. That is,

PR,e({ C }1 = R.

Let U be an arbitrary region in generalized configuration space . For example, we
might not be guaranteed to have the initial position within R; it might lie within
some region S. We let U = S - R, and investigate the effect of executing the
strategy from U while lying to the termination predicate: we tell it we were really
within R when the motion started.

We define a push-forward of 0 from U with respect to R and { G,8 denoted
F.. F(0,U,R, I G# }), as follows:

We assume a termination predicate with no local history and without time:
see [Erdmann]. The formulation for variations of this predicate are very similar.
Forward projections in phase space are denoted with tildes. Recall 7r is the canonical
projection of phase space onto configuration space. Given an actual position and

280

*%

'4I

velocity (x,v), a corresponding sensed position an- relocity is denoted (x*, v*).
(x*,v*) is said to be consistent with (x,v) iff (x*,v*) E Bp(x) x Be(v).

F.(8, U, R, { G,6 }) is the set of pairs (x, v) E F(U) such that there is an initial
position pD E U and a corresponding sensed position P; E Bep(PO)fnRfnPF(R),g(C),

"5 and some G E { G,6 }, such that for all (x*, v*) consistent with (x, v),

B ×p(x) x Bv(v*) n Pe(R) C i-(G). (,)

Note, however, that it is possible for the motion not to terminate. For the sake
of discussion, however, assume it does terminate, either by using velocity thresh-
olding or time. This requires indexing the forward projection in (*) by time. These
assumptions allow us to prove some lemmas that provide some intuition about this
push forward.

Now, suppose further that R C S. Abbreviate F. = 7rF.(O, S, R, { G# })). The
following lemmas help characterize the push forward F.. Let H be the EDR region
as given in (6), and let H = ir. F. says exactly where the strategy 9 will terminate

* when executed from S, if we lie to the termination predicate and tell it we really

started from R.

Lemma: Bo(F.) D R.

Lemma: PR,9(F.) = R.

Now, in general, maximal preimages do not exist [Mason, E]. If R is not a
maximal preimage, then the equation

F. c Hu (G)(**)

need not hold. It would be useful to prove or disprove the following:

Conjecture: (**) holds when R is maximal.

In particular, if there is just one goal G, then this would imply F* C H U G.

[• §A.7. The Formal Requirements for Push-Forwards

We now characterize the formal requirements for push-forwards. Note that the
approximate push-forward, above, need not satisfy these constraints.

: "For notational purposes, we regard motion strategies as mappings, and so we
write

Ri= PR.,9 ,(Ri- 1) (*)

as

,.' --. "Ri=4Ri_i"

281

0.%

'A ' ,-;% 44 .. ,-.."......".".....-. , .: ": ..' ..:.'... " " '.: .: ': .::*. ."

If the Ri are successive subgoals in a plan whose motions are the 9j, then (,) is a
necessary and sufficient condition for the subgoals to be suitable for back-chaining
[LMT.]

Given as data strategy 9i, a goal Ri- 1 , an actual start region R, and a region Ri
from which Oi is guaranteed, we can always construct an EDR region Hi- 1. (Hi- 1

* .~'* is irHil, see (6)). Of course we may not be able to construct an EDR strategy from
Hi- 1. Denote the dependence of H on its data by

. Hi -I =- H(R, 0j),

so we imagine examining the "domain" and "range" of 9i to obtain Ri and Ri-1 .
If there exists an EDR strategy for the EDR region Hi- 1 , we denote this by

• Ri-i

R

e, H(R, 0i).
More generally, we could replace Ri- 1 with the distinguishable union of some set
of goals. As suggested in the informal exposition, we will in fact replace it with
the set of unattained subgoals in an n-step plan. The motion 9i must then achieve
either some unattained subgoal, or the EDR region.

Now, suppose we are given a guaranteed n-step plan, E),
'" ,,e0,-I 9,_ 2 .,. 1

R 14, R'n .- 1 i A , " " :: - = G.

Define Rj - Rj, Rj_,... , R , R0 } to be the distinguishable union of all
unattained subgoals (after Rj). The one step EDR strategy we seek may achieve any
one of these subgoals. Suppose the start region R contains R,. We can construct an
n-step EDR strategy with start region R, (using E) as data) if there exist termination
regions F, ... ,Fni, for some i between 1 and n, such that

Tzn -i-i

F- n = F~n_1 ==,..F~n- i

n n
R Rn-I U Hn- 1 Rn..-i, U Hn-, Hn-i-1

Wv, where

Hj- I= H(Fj, Oj).

282

% %- %-.. ,. -

In other words,

F..= R

F...-I C R,-I U H(R, 8.)

F..- 2 C R.- 2 U H(F.._,0._i)

F..-i C R.-i U H(F..-i+IOn-i+l),
such that

F.j = PF.,ej(F.j-1) for all j,

and such that there exists a one-step EDR strategy

i F.n-i

These termination regions { F.j } characterize the requirements for push-forwards.
The push-forward should be a function satisfying these constraints, by which we
mean that the push-forward is a set-valued map whose values are these termination
regions. We hope that the termination regions may be approximated by push-
forwards such as the example in the last section. Computing exact push-forwards

appears to be at least as hard as solving n-step pre-image equations.
Note (1): When maximal preimages do not exist, for completeness it may be nec-
essary to employ a weaker constraint on termination regions. For example, the
weakest constraint would be

H(F.j, Oj) = Foj (F.j).

See the previous section for more details.
Note (2): As the notation suggests, it is possible to formalize the view of "mo-
tions as mappings"-this notion is implicit in the term "preimage." To develop this
viewpoint, one considers motions as a certain class of morphisms between distin-

guishable unions in the powerset of the tangent bundle to generalized configuration
space . An EDR theory, then, is a covariant functor associated with a family of
quotient maps of the form

r ': TC x J {P, P, .

While it is possible to push such functurial viewpoint, any category-theoretic
formulation of this flavor will almost certainly be exclusively descriptive.

283

W-t%

.,.6i

References

Certain frequently cited references have been given shorter mnemonics, eg., [LMT].

Abraham, R. and Marsden, J. Foundations of Mechanics, Benjamin/Gum-
mings, London (1978).

Arnold, V. I. Mathematical Methods of Classical Mechanics, Springer-Verlag, New
York (1978).

Ben-Or M., Kozen D., and Reif J., "The Complexity of Elementary Algebra
and Geometry", J. Comp. and Sys. Sciences, Vol. 32, (1986), pp. 251-264.

Boyse 3. W., "Interference Detection Among Solids and Surfaces", Comm ACM,
vol 22, No 1 (1979) pp 3-9.

Brady, M. et. al. (eds). Robot Motion: Planning and Control., Cambridge,
Mass.: MIT Press. (1982).

Brooks, R. A. Symbolic Error Analysi's and Robot Planning, International Journal
of Robotics Research, Vol 1, no. 4, Dec., 29-68 (1982).

Brooks, R. A A Robust Layered Control System for a Mobile Robot. IEEE Journal
of Robotics and Automation RA-2 (1): 14-23. Also MIT A.I. Lab Memo S64
(1985).

Brooks, R., "Solving the Find-Path Problem by Good Representation of Free
Space", IEEE Transactions on Systems, Alan. and Cyberbetzcs. Vol. 13. 19S3.

Brooks, R., and T Lozano-P~rez, "A Subdivision Algorithm in Configuration1
Space for Findpath with Rotation". Eighth International Ji~ Co -rfe, r'nc ()?
Artificial Intelligence, Karlsruhe. Germany. Auguist. 19,S1

Brost, R. C. Planning Robot Gra.4ping Afotzonq i n the Pr.4r ;(wr of Un- ertainty.

Computer Science Departmnent and thle Rl)t1MIllst it it eC riiie ti
University. CNIU-RJ-TR-S3-12 1 9S.1;

Brost, R.. ~.~tmtcGrasp li),;iiiul :n i i i~o 0; 1 t~~v EEX"

B rost, R. .4 Sta. .4(tiwi Spti.4 A ;J'ru> ~ A.aI r '::,~

* I~Buckley, S. J. [a'riu!;Tj ;,)a T ,.(. .:;t.If i .A Plh D hi.

Biirridge,. U.. Hajazi. V. T., ind sc tiwart 1, J. T. T,; P :IZoProb-

2 ".k I

--). &-'-

-AiS7 746 ERROR DETECTION AND RECOVERY
FOR ROBOT MOTION PLANNING

4/4
ITH UNCERTAINTV(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB B R DONALD

I UNCLASSIFIED JUL 87 Al-TR-982 988814-85-K-012 F/G 12/9 Nm, IIII EEIIIEEIIiII
EhII hhIIIIIIIIIII II

LW

0"i! 318n

l111- _LA____ ii11.6

W (PY RVF J" NTEqT CHART

WOW

Caine, M., "Chamferless Assembly of Rectangular Parts in Two and Three Dimen-
sions", S.M. dissertation, MIT Department of Machanical Engineering, June
1985.

Cameron S., "A Study of the Clash Detection Problem in Robotics", proc. IEEE
conf. on Robotics and Automation, 1985, pp 488-493.

Canny, J.F. A New Algebraic method for Robot Motion Planning and Real Geom-
etry, FOCS (1987).

[C] Canny, J. F. Collision Detection for Moving Polyhedra, PAMI-8(2) (1986).
Canny, J.F. The Complexity of Robot Motion Planning, Ph.D. Thesis, MIT De-

partment of Electrical Engineering and Computer Science (1987).
Canny, J.F. Computing Roadmaps of Compact Semi-Algebraic Sets, Intl. Work-

shop on Geometric Reasoning, Oxford, England, June (1986).
Canny, J.F. and Donald, B. R. Simplified Voronoi Diagrams, Proc. ACM

Symposium on Computational Geometry, Waterloo, June (1987).
Canny, J.F. and Donald, B. R. Simplified Voronoi Diagrams, Discrete and

4 Computational Geometry (to appear).
[CR1 Canny, J., and J. Reif, "New Lower Bound Techniques for Robot Motion

Planning Problems", FOCS (1987).
Chapman, D. Planning for Conjunctive Goals, MIT AI-TR 802 (1985).
Chistov A. L. and Grigoryev D. Y., "Complexity of quantifier elimination in

the theory of algebraically closed fields", Lect. Notes Comp. Sci. 176, Springer
Verlag, (1984).

Collins G. E. "Quantifier Elimination for Real Closed Fields by Cylindrical Alge-
braic Decomposition" Lecture Notes in Computer Science, No. 33, Springer-
Verlag, New York, (1975), pp. 135-183.

Cutkosky, M., "Grasping and Fine Manipulation for Automated Manufacturing",
Ph.D. dissertation, Carnegie-Mellon University, January, 1985.

Davis, E. and McDermott, D. Planning and Executing Routes through Uncer-
tain Territory, Yale University, Dept. of Computer Science (1982).

[D1] Donald, B. R. Motion Planning with Six Degrees of Freedom, MIT AI-TR
791, Artificial Intelligence Lab. (1984).

Donald, B. R. On Motion Planning with Six Degrees of Freedom: Solving the
Intersection Problems in Configuration Space, IEEE International Conference
on Robotics and Automation, St. Louis, MO (1985).

Donald, B. R. A Search Algorithm for Motion Planning with Six Degrees of Free-
dom, Artificial Intelligence, 31 (3) (1987).

[D] Donald, B. R. Robot Motion Planning with Uncertainty in the Geometric Mod-
els of the Robot and Environment: A Formal Framework for Error Detection
and Recovery, IEEE International Conference on Robotics and Automation,
San Francisco, April (1986a).

285

.1,' i-C- £e . .3 e, y ., ;. .- , . . . - - e".."e2e. ".. I ".".
-
e".2 " %"" . " ". :_% ." . ., J ,

[D] Donald, B. R. A Theory of Error Detection and Recovery for Robot Motion
Planning with Uncertainty, Intl. Workshop on Geometric Reasoning, Oxford,
England, June (1986b).

Draper Laboratories, Fourth Annual Seminar on Robotics and Advanced As-
sembly Systems, Cambridge, Massachusetts, November, 1983.

Dufay, B., and J. Latombe, "An Approach to Automatic Robot Programming
Based on Inductive Learning", in Brady, M., and R. Paul, Robotics Research:
The First International Symposium, MIT Press, 1984.

Durrant-Whyte, H. Concerning Uncertain Geometry in Robotics, Intl. Workshop

on Geometric Reasoning, Oxford, England, June (1986).
[E] Erdmann, M. Using Backprojections for Fine Motion Planning with Uncer-

tainty, IJRR Vol. 5 no. 1 (1986).
Erdmann, M. On Motion Planning With Uncertainty, MIT Al Lab, MIT-AI-TR

810 (1984).
Erdmann, M., and M. Mason, "An Exploration of Sensorless Manipulation",

IEEE International Conference on Robotics and Automation, San Francisco,
April, 1986.

Faverjon, B. Obstacle Avoidance Using an Octree in the Configuration Space of a
Manipulator, Proc. IEEE Intl. Conf. Robotics, Atlanta (March 1984).

[STRIPS] Fikes, R. and Nilsson, N. STRIPS: A New Approach to the Appli-
cation of Theorem Proving to Problem Solving, Artificial Intelligence vol. 2
(1971).

Fortune, S., Wilfong, G., and Yap, C. 1986 (April 7-10, San Francisco, Cal-
ifornia). Coordinated Motion of Two Robot Arms. Proceedings of the 1986
IEEE International Conference on Robotics and Automation, pp. 1216-1223.

Gini, M. and Gini, G. Towards Automatic Error Recovery in Robot Programs,
IJCAI-83 (1983).

Grigoryev D. Y., "Complexity of Deciding Tarski Algebra" Jour. Symbolic Com-
putation, special issue on decision algorithms for the theory of real closed fields,

* to appear (1987).
Grossman, D., and R. Taylor, "Interactive Generation of Object Models with

a Manipulator", IEEE Transactions on Systems, Man, and Cybernetics, Vol.
8, No. 9, September, 1978.

[Gor1 Gordon, B. B. Intersections of Higher- Weight Cycles over Quaternionic
Modular Surfaces and Modular Forms of Nebentypus, Bull. AMS 14 (2), pp.
293-8 (1986).

Hayes, P. A Representation for Robot Plans, 4th IJCAI (1976).

Hopcroft, J. E., Schwartz, J. T., and Sharir, M. 1984 On the Complexity
of Motion Planning for Multiple Independent Objects; PSPACE-Hardness of

286

.% % 0" ,-" "
4. ~J *. ~ W d ~ ~ .4

the "Warehouseman's Problem." International Journal of Robotics Research.
3(4):76-88.

Hopcroft J., and Wilfong G., "Motion of Objects in Contact," Int. Jour.
Robotics Res. vol 4, no. 4, (1986).

Hungerford, T. W. Algebra, Springer-Verlag, New York GTM 73 (1974).
Hogan, N., "Impedance Control of Industrial Robots", Robotics and Computer-

Integrated Manufacturing, Vol. 1, No. 1, 1984.
Inoue, H., "Force Feedback in Precise Assembly Tasks", MIT Artificial Intelligence

Laboratory, AIM-308, August, 1974.
Khatib, 0. Real- Time Obstacle Avoidance for Manipulators and Mobile Robots,

Int. Jour. Rob. Res. vol. 5, No. 1, pp. 90-99 (1986).
Koditschek, D., "Exact Robot Navigation by Means of Potential Functions: Some

Topological Considerations", Proc. IEEE Intl. Conf. Robotics, Raleigh, March
1987.

Koutsou, A., "A Geometric Reasoning System for Moving an Object While Main-
taining Contact with Others", ACM Symposium on Computational Geometry,

q Yorktown Heights, N.Y., 1985.
Kozen D., and Yap C. "Algebraic Cell Decomposition in NC", Proc IEEE symp.

FOCS, (1985), pp. 515-521.
Laugier, C., "A Program for Automatic Grasping of Objects with a Robot Arm",

Eleventh Symposium of Industrial Robots, Japan Society of Biomechanisms and
Japan Industrial Robot Association, 1981.

Lee, D. T., and Drysdale, R. L., "Generalization of Voronoi diagrams in the
plane," SIAM J. Comp. (10) (1981) pp. 73-87.

Lieberman, L., and M. Wesley, "AUTOPASS: An Automatic Programming
System for Computer Controlled Mechanical Assembly", IBM Journal of Re-
search Development, Vol. 21, No. 4, 1977, pp. 321-333.

Lozano-P6rez, T., "The Design of a Mechanical Assembly System", S.M. disser-
tation, MIT Department of Electrical Engineering and Computer Science, also
AI-TR-397, MIT Artificial Intelligence Laboratory, 1976.

Lozano-Perez, T. Automatic Planning of Manipulator Transfer Movements, IEEE
Trans. on Systems, Man and Cybernetics (SMC-11):681--698 (1981).

Lozano-Perez, T. Spatial Planning: A Configuration Space Approach, IEEE
Trans. on Computers (C-32):108-120 (1983a).

Lozano-Pgrez, T., "Robot Programming", IEEE Proceedings, 1983b.
Lozano-Prez, T., "Motion Planning For Simple Robot Manipulators", Third

International Symposium on Robotics Research, Paris, October, 1985.
Lozano-Perez, "A Simple Motion Planning Algorithm for General Robot Manip-

ulators," in Proceedings of Fifth National Conference for the American Asso-
ciation of Artificial Intelligence, Philadelphia, 1986, pp. 626-631.

287

*

[LMT] Lozano-P6rez, T., Mason, M. T., and Taylor, R. H. Automatic
Synthesis of Fine-Motion Strategies for Robots, Int. J. of Robotics Research,

Vol 3, no. 1 (1984).

Lozano-P6rez, T., and Wesley, M. A. An algorithm for planning collision-free

paths among polyhedral obstacles, Communications of the ACM (22):560-570
(1979).

Lumelsky, V. J. Continuous Motion Planning in Unknown Environment for a 3D

Cartesian Robot Arm. , Proceedings of the 1986 IEEE International Conference
on Robotics and Automation, pp. 1569-1574. (April 7-10, San Francisco,

Calif.) (1986).
Mason, M.T. Compliance and force control for computer controlled manipulators,

IEEE Trans. on Systems, Man and Cybernetics (SMC-11):418-432 (1981).

Mason, M.T. Manipulator Grasping and Pushing Operations, MIT AI Lab, MIT

AI-TR-690 (1982).

Mason, M. T. 1986. Mechanics and Planning of Manipulator Pushing Operations.
International Journal of Robotics Research 5(3).

Mason, M. T. Automatic Planning of Fine Motions: Correctness and Complete-
ness, 1984 IEEE International Conference on Robotics, Atlanta Ga. (1984).

Mason, M. T. 1985 (March 25-28, St. Louis, Missouri). The Mechanics of Manip-
ulation. Proceedings of the 1985 IEEE Int. Conf. on Robotics and Automation,
pp. 544-548.

McDermott, D. A Temporal Logic for Reasoning about Processes and Plans, Cog.
Sci. 6, pp. 101-55 (1982).

Natarajan, B. K. 1986 (Oct. 27-29, Toronto, Ontario). An Algorithmic Approach
to the Automated Design of Parts Orienters. Proceedings of the 27th Annual
IEEE Symposium on Foundations of Computer Science, pp. 132-142.

Natarajan, B. K. 1986. On Moving and Orienting Objects. Ph.D. Thesis. Ithaca,

N.Y.: Cornell University Department of Computer Science.

Neivergelt, J., and Preparata, F. P. Plane-Sweep Algorithms for Intersecting

Geometric Figures, CACM Vol. 25, no. 10 (1982).
6 'Dnlaing, C., Sharir, M., and Yap C., "Generalized Voronoi diagrams for

moving a ladder: I Topological Analysis," NYU-Courant Institute, Robotics
Lab. Tech. report No. 32 (1984)

@1'. 6 'Dfinlaing, C., Sharir, M., and Yap C., "Generalized Voronoi diagrams for

moving a ladder: II Efficient construction of the diagram," NYU-Courant In-
stitute, Robotics Lab. Tech. report No. 33 (1984)

O'Ddnlaing C., and Yap C., "A retraction method for planning the motion of
a disc," J. Algorithms (6) (1985) pp. 104-111

288

...

Ohwovoriole, M., and B. Roth, "A Theory of Parts Mating For Assembly Au-
tomation", Proceedings of the Robot and Man Symposium 81, Warsaw, Poland,
September 1981.

Paul, R., Robot Manipulators, MIT Press, Cambridge, Massachusetts, 1981.

Peshkin, M., "Planning Robotic Manipulation Strategies for Sliding Objects",
Ph.D. dissertation, Department of Physics, Carnegie-Mellon University, 1986.

Peshkin, M., and A. Sanderson, "Reachable Grasps on a Polygon: The Con-
vex Rope Algorithm", IEEE Journal of Robotics and Automation, Volume 2,
Number 1, March, 1986.

Raibert, M., and J. Craig, "Hybrid Position/Force Control of Manipulators",
Journal of Dynamic Systems, Measurement, and Control, No. 102, June, 1981,
pp. 126-133.

Reif J., "Complexity of the Mover's Problem and Generalizations," Proc. 20th
IEEE Symp. FOCS, (1979). Also in "Planning, Geometry and Complexity
of Robot Motion", ed. by J. Schwartz, J. Hopcroft and M. Sharir, , Ablex
publishing corp. New Jersey, (1987), Ch. 11, pp. 267-281.

Requicha, A. A. Representation of Tolerances in Solid Modeling: Issues and
Alternative Approaches, Solid Modeling by Computers: From Theory to Ap-
plications; Plenum, N. Y. (1984).

Salisbury, J.K., "Active Stiffness Control of a Manipulator in Cartesian Coordi-
nates", IEEE Conference on Decision and Control, Albuquerque, New Mexico,
November, 1980.

Salisbury, J.K., "Kinematic and Force Analysis of Articulated Hands", Ph.D.
dissertation, Stanford University, Department of Mechanical Engineering, 1982.

Segre, A. M., and G. DeJong, "Explanation-Based Manipulator Learning: Ac-
quisition of Planning Ability Through Observation", IEEE International Con-
ference on Robotics and Automation, St. Louis, March, 1985.

Schwartz J., Hopcroft J., and Sharir M., "Planning, Geometry and Complex-
ity of Robot Motion Planning", Albex Publishing Co., New Jersey, (1987).

Schwartz J. and Sharir M., "On the 'Piano Movers' Problem, II. General Tech-

niques for Computing Topological Properties of Real Algebraic Manifolds,"

Comp. Sci. Dept., New York University report 41, (1982). Also in "Planning,
Geometry and Complexity of Robot Motion", ed. by J. Schwartz, J. Hopcroft

, and M. Sharir, Ablex publishing corp. New Jersey, (1987), Ch. 5, pp. 154-186.

Schwartz J. and Yap C. K., "Advances in Robotics," Lawrence Erlbaum asso-
ciates, Hillside New Jersey, (1986).

Simunovic, S. N., "An Information Approach to Parts Mating", Ph.D. disserta-

tion, Department of Electrical Engineering, Massachusetts Institute of Tech-
nology, 1979.

289

,)

Simunovic, S. N. 1975 (Sept. 22-24, Chicago, Illinois). Force Information in
Assembly Processes. Proceedings 5th International Symposium on Industrial
Robots. Bedford, U.K.: IFS Publications, pp. 415-431.

Shapiro, V. Parametric Modeling and Analysis of Tolerances, GM Research Lab.
Rept. CS-460 (1985).

Srinivas, Sankaran Error Recovery in Robot Systems, Cal. Tech. Ph.D. Thesis,
Computer Science (1977).

Taylor, R. H. The Synthesis of Manipulator Control Programs from Task-level

Specifications, Stanford Artificial Intelligence Laboratory, AIM-282, July (1976).
Tarski A., "A Decision Method for Elementary Algebra and Geometry" Univ. of

Calif. Press, Berkeley, (1948), second ed. 1951.
Turk, M., "A Fine-Motion Planning Algorithm", SPIE Conference on Intelligent

Robots and Computer Vision, Cambridge, Massachusetts, September, 1985.
Udupa, S., "Collision Detection and Avoidance in Computer Controlled Manip-

ulators", Ph.D. dissertation, Department of Electrical Engineering, California
Institute of Technology, 1977.

0Udupa S., "Collision Detection and Avoidance in Computer Controlled Manipu-
lators", Proc. 5th Int. Joint. Conf. on Art. Intell., Mass. Inst. Tech. (1977)

.F" pp 737-748.
Valade, J., "Automatic Generation of Trajectories for Assembly Tasks", Sizth

European Conference on Artificial Intelligence, Pisa, Italy, September, 1984.
Ward, B. and McCalla, G. Error Detection and Recovery in a Dynamic Planning

Environment, AAAI (1983).
Whitney, D., "Force Feedback Control of Manipulator Fine Motions", Journal of

Dynamic Systems, Measurement, and Control, June, 1977, pp. 91-97.
Whitney, D., "Quasi-Static Assembly of Compliantly Supported Rigid Parts",

Journal of Dynamic Systems, Measurement, and Control, Vol. 104, March
1982.

Whitney, D., "Historical Perspective and State of the Art in Robot Force Control",
IEEE International Conference on Robotics and Automation, St. Louis, March,

I, 1985.
Wilkins, D. E. Domain-Independent Planning: Representation and Plan Genera-

tion, Artificial Intelligence, Vol. 22 No. 3 (1984).
Yap, C., "Coordinating the motion of several discs," NYU-Courant Institute,

On Robotics Lab. No. 16 (1984)

Yap, C., "Algorithmic Motion Planning", in Advances in Robotics: Volume 1,
edited by J. Schwartz and C. Yap, Lawrence Erlbaum Associates, 1986.

.290

IV V; .

~~ ~~ ~~1, ,i m-g ' ' ,'%V' ~r U . .~ %WP , %

Appendix: Code for the Sweep Algorithm

All

129

.r 0. . r

.L V 7. _ A. _W IT

.. Plan* sweep algorithm for computing Forward projection.
* , ackprojections. and Weak backprojections in 0(n log n) time,

and set differences. intersections, and unions in 0C(n~c) log n)
time. Implemented in rational arithmetic in ZetaLlsp.

.. by John Canny and Bruce Donald, MIT Artificial Intelligence Laboratory,
545 Technology Square, Cambridge, MA 02139

(a C) Copyright Massachusetts Institute of Technology, 1936

(DEFNACRO REST MX
(CDR *X))

(DEFCONST BACIPROJECTI0N? 0

(DEFCONST EPS IE-4)

(DErSTRUCT (POLYGON :MNED : PREDICATE)
LOOP-LIST
LOOP-END
COLOR)

CDEFSTRUCT (POINT CaTYPE sLIST) sMNLD aPREDICATE)

Y)

CDEFSTRUCT (EDGE C aTYPE a LIST) tMNEID a PREDICATE)
TAIL
HEAD
EON
EDGE-PROPERTIES)

(DEFSTRUCT CEON (sTYPE a LIST) sMAMED 1PEDICATE)

PROPERTIES)

(DEFSTRUCT (EVENT CsTYPE : LIST) :NAMED a PREDICATE)

POINT
COLOR-CHASGE
EON)

CDEFSTRUCT (INTERVAL CaTYPE sARRAY) sNANED sPREDICATE)
TOP
BOTTOM
EVENT
OUTPOT-STROCTURE)

(DEFSTRUCT (OUTPUT-STRUCTURE C aTYPE a ARRAY) a NAMED : PREDICATE)
TOP
BOTTOM

* TOP-END
BOTTOM-END
POLYGON)

(DEFSTRUCT CQUERY-MODE tNAMED sPREDICATE)
X-NIN
X-MAX
INTERVALS)

(defutruct (CO-vertex tnamed (stype slist) :predicate)

a Y

vertex-generator
Cour face-type)

(DEFUM NEG-EON (SON)
(IF Cx EON)

(MApE-EON X C-(X EON)) Y C-(Y EQNI) D C-(D EQN)) PROPERTIES (PROPERTIES EON))

292

P ~ ~ I, It 1. W*- - ~ . '% *~

EON))

(DEFUN FAST-FLOAT (A)
(// (FLOAT (NUMERATOR A)) (FLOAT (DENOMINATOR A))))

(DEFUN EVENT-> (EVENT-i EVENT-2)
(LET ((DIF (- (FAST-FLOAT (X (POINT EVENT-)))

(FAST-FLOAT (X (POINT EVENT-2))))))
(COND (0, DIF EPS) 1)

((< DIF (- EPS)) -1)
(T (LET ((TEST (- (X (POINT EVENT-i)) (X (POINT EVENT-2)))))

(IF (ZEROP TEST)
(LET ((NEXT-TEST (- (Y (POINT EVENT-i)) (Y (POINT EVENT-2)))))

(IF (ZEROP NEXT-TEST)
(SLOPE-> (EON EVENT-i) (EON EVENT-2))
NEXT-TEST))

TEST))))))

(DEFUN SLOPE-> (EON-i EQN-2)

(IF EON-i
(IF EQN-2

(IF (ZEROP (Y EQN-1))
(IF (ZEROP (T EON-2))

0
1)

(IF (ZEROP (Y EON-2))

-1
C- (CLa// (X EON-2) (Y EON-2))

a (CLi// (X EON-1) (Y EON-1)))))
i)

(IF EQN-2 -1 0)))

(IDEFUN INTERSECTION-POINT (TOP BOTTOM)
(IF (MINUSP (SLOPE-> TOP BOTTOM))

(LET ((DET (- (C (X BOTTOM) (Y TOP)) (* (X TOP) (T BOTTOM)))))
(MAKE-POINT X (CLt// (- (C (T BOTTOM) (D TOP)) (CT TOP) (D BOTTOM)))

DET)
T (CLs// (- (* (X TOP) (D BOTTOM)) (CX BOTTOM) (D TOP)))

DET)))))

(DEFNACRO E) (A B)
- • 'C) C- ,A ,B) EPS))

(DEFUN IN-INTERVAL? (POINT INTERVAL F-POINT)
(COND

((E> (T F-POINT) (Y-AT-X (TOP INTERVAL) F-POINT)) 1)
((E> (T-AT-X (BOTTOM INTERVAL) F-POINT) (T F-POINT)) -I)
((> (T POINT) (T-AT-X (TOP INTERVAL) POINT)) i)
((< (Y POINT) (T-AT-X (BOTTOM INTERVAL) POINT)) -i)
(T 0)))

(DEFUN INTERVAL-) (INT-i INT-2 POINT F-POINT PM)
(IF (EQ INT-i INT-2)

(LET ((FTD (- (Y-AT-X (TOP INT-1) F-POINT)
(Y-AT-X (TOP INT-2) F-POINT))))

0 (COND ((> FTD EPS) 1)
((c FTD C- EPS)) -1)
(T (LET ((TD (- (Y-AT-X (TOP INT-1) POINT)

(Y-AT-X (TOP INT-2) POINT))))
(IF (ZEROP TD)

(LET ((BD (- (T-AT-X (BOTTOM INT-i) POINT)
(T-AT-X (BOTTOM INT-2) POINT))))

(IF (ZEROP BD)
(LET ((TS (S-> (SLOPE (TOP INT-1) PM)

(I (ERP S (SLOPE (TOP INT-2) PM))))(IF (ZEROP TS)

(S-> (SLOPE (BOTTOM INT-I) PM)

TS-, (SLOPE (BOTTOM INT-2) PM))
• B TS)

TD)))))))

(DEFUN DOT (EON-i EON-2)
(C* (FLOAT (X EQN-i)) (FLOAT (X EON-2)))

293

04

1(FLOAT CY EON-1)) (FLOAT (Y EON-2)))))

(DEFUN Y-AT-X (EON POINT)

(IF (ZERO? (Y EON))
A~ ' (Y POINT)

(CLs// C (0 EONl) (w (X EON) (X POINT)))
C-YC EON)))))

CDEFUN SLOPE (EON PM)

(IF (ZEROP CY EON))

C' PM (Cia// (X EON) C- (Y EON))))))

V9. (DEFUN S-> (A B)

(IF CEO A '4m)
(IF (to a 1+*) 0 1)
(IF CEO B I -) -1 C- A B)))

(DEFUN ALWAS- (ignore ignore)
1)

(OEFUN IN-RANGE? (X QUERY-NODE)
(COND ((AND CX-KAX QUERY-NODE) C> X CX-MAX QUERY-NODE)) 1)

((AND CX-MIN QUERY-NODE) (4 X (X-MIN QUERY-NODE))) -1)
CT 0)))

(DEFUN ENCODE (COLOR NUMBER)
(SELECTO COLOR

(OBSTACLE (LOAD-BYTE NUMBER 0 9.))
(START (DEPOSIT-BYTE 0 9. 9. NUMBER))

'I (PROJECTION (DEPOSIT-BYTE 0 10. 9. NUMBER))))

C DEFCONST PROJ-COLOR (ENCODE ' PROJECTION 1))
CDEFCONST FREE-COLOR 0)

CDEFCONST CARRY- (ASH 1 9.))
CDEFCONST CARRY-2 (ASH 1 18.))

(DEFUN ADD-COLO0RS (A B)
(LET ((SUM (- (i. A B) (LOGAND CARRY-i CLOGXOR A B III A B))))))

C- SUM (LOGAND CARRY-2 (LOGIOR A B SUM)))))

COEFUN ADD-COLORS-CAREFULLY (A 5)
~. .~(LET C((SUM (ADD-COLORS A B)))
*~ .. ~(IF (PLUSP (COLOR-FIELD SUM))

(COLOR-FIELD SUM)
SUM

C DEFUN SUB-COLO0RS (A B)
(LET CCDIF C+ C- A B) (LOGAND CARRY-i CLOGXOR A B C-A B))))))

C+ D17 CLOGAND CARRY-2 (WGXOR A B DIF)))))

(DEFUN NEG-COLOR CA)
(SUB-COLORS 0 A))

(DEFUN FREE? (A)
0 (ZEROP A))

(DEFUN FP? (A)
(PLUS? (LOAD-BYTE A 16. 9)))

(DEFUN COLOR-FIELD (A)
(LOAD-BYTE A 0 16.))

(DEFUN OBST? (A)
(PLUS? MWADBIT A 0 9.)))

COEFUN START? CA)

(PLUSP (LOAD-BYTE A 9. 90))

(DEFUN EVENT-ADD (EVENT TREE GOPTIONAL NO-MUTATION)
(LET C (CURRENT-EVENT CAVL-ACCESS EVENT TREE #'EVENT)))

(COND (CURRENT-EVENT
~ p CSETF CCOLOR-CHANCE CURRENT-EVENT) (ADD-COLORS (COLOR-CHANCE EVENT)

(COLOR-CHANGE CURRENT-EVENT)))

294

(IF (FREE? (COLOR-CHANGE C kRLNT-EVENT

(AVL-DELZTE CURJENT-EVENT TREE 0 -EVENT- NO-MUTAT,.0N

TREE))
(T (AVL-INSERT EVENT TREE 0 EVENT-> NO-MUTATION)))),

(DEFUN EVENT-SUB (EVENT TREE OOPTIONA.L NO-MUTATIONN)
-'(EVENT-ADD (MANE-EVENT POINT (POINT EVENT) LOW (EON EVENT)

COLOR.-CHANGE (NEG-COLOR (COLOR-CHANGE EVENT)
TREE NO-MUTATION))

(DEFUN OLD-MERGE-EVENTS (A 3)
% (DO' ((START (NCONS NIL))
.r. (PTR START))

(T% ((NOT (AND A 3))
(SETT (REST PTR) (OR A B))
(REST START))

(LET ((SIGN (SLOPE-> (EON (FIRST A)) (EON (FIRST B)))))
(COND ((PLUSP SIGN)

(SETF (REST PTR) (NCONS (FIRST 3)))
(SETQ PTR (REST PTR))
(SETO B (REST B)))

((MINUSP SIGN)
(SETF (REST PTR) (NCONS (FIRST A)))
(SETO PTR (REST PTR))
(SETO A (REST A)))
(T (LET ((NEW-COLOR (ADD-COLORS (COLOR-CHANGE (FIRST A))

(COLOR-CHANGE (FIRST B)))))
(COND ((NOT (FREE? NEW-COLOR))

(SET? (REST PTI) (NCONS (MAKE-EVENT POINT (POINT (FIRST A))
EON (EON (FIRST A))

COLOR-CHANGE MEW-COLOR))
(SETO PTR (REST PTR))))

(SETO A (REST A) B (REST B)))))

(defun merge-events (a b)
(do* ((start (neon& nil))

S, (ptr start))
((not (and a b))
(seif (rest ptr) (or a b))
(ret start))

(let ((sign (slope-) (eqn (first a)) (eqn (first b)))))
(cnd ((plusp siqn)

(setf (rest ptr) (neon& (first b)))
(mtq ptr (reat ptr))
(uetq b (rest b)))

((mi nusp gm)
(setf (rest ptr) (neons (first a)))
(aetq ptr (rest ptr))
(aetq a (rest a)))
(t (let ((new-color (add-colors (color-change (firt a))

(color-change (first b)))))
(cond ((not (free? new-color))

(setf (rest ptr) (neons (make-event point (point (first a))

eqn (merge-equations
4" (qn (first A))

(eqn (first B)))
color-change new-color)))

* (setq ptr (ret ptr))))
(.etq a (rest a) b (rest b))))))))

w'.

Merge the generators of two events. Assume that Eqnl and Eqn2 are equal.
They must both have obstacle tags.

4 (defun marge-equationu (Eqnl Eqn2)
(cond ((and (generators (properties Eqnl))

(generators (properties Eqn2))
(not (equal (generators (properties Eqnl))

(generators (properties Eqn2)))))

(mak*-eqn X (x Eqn1) Y (Y Eqnl) D (D Eqnl)
Properties (make-edge-dencription Tag (tag (properties Eqnl))

Generators
S. (merge-generatorm

(generators (properties Eqnl))
(generators (properties Eqn2))))))

(T Eqnl)))

295

%' %
_4 /1M. .7)h 4 :AN

.5 " W P . % . . ,w ". P - " " . P W ' " P . ' " . . ', " .. - ; e ._I

append if (CO-vertsx-p Gli iiist .;) ,

1f ;--verteu-p G21 (..st G2) G2)i

;LTUN AV!.- LAD-Al&L rEVENT-QUEULE)
.ZT T:,RST-rVzwNT

.NULTPLE-VALLUX FrST-EVENT EVENTQU'EUE)

AVIL-EAD EVENT-QUEUE)
:F F.RST-EVENT

!Do- ((EVENTS (ISCONS rIRST-EVEN)
4TA EVENTS (REST PTR(H

(NULL PTR) (VALUES EVENTS EVENT-QUEUE)H
LET ((NET-MUET tLZ.TT-910T EVENT-QUEUE))
(COND (AND NEXT-EVENT (EQUAL iPOINT NEXT-EVENT) (Po:NT rIRST-EVENT))

(MULTIPLE-VALUE (NEXT EVENT EVENT-QUEUE)
(AVL-4EAZ EVENT-QUEUJE)

SET? (REST PTR) (NCONS NEXT-EVENT))
?vALLts W::- N1-i))

:EF':.?. F:LTER iL:ST PREDICA"El
7 (OUTPUT NIL))

(DOLIST (EL LIST)
(f, fruNc.ALL PRZOICATE (COLR ELi(

(SETQ OUTPUT (CONS EL OUTPUT)()
OUTPUT)

N Z)EFLY SWEEP-UNION (POLYS) treverse my loops soon?
ir:.LTER (PROJECT POLYS () o o) t*Frpx?)'

:;EFUN LOCATE-POINT (POINT QUERY-TREE)
LET (F-POINT (KRIM-POINT X (FLOAT (X POINT) Y (FLOAT (Y POINT)H)
(AVL-ACCESS POINT

(INTERVALS (AVL-ACCESS (X POINT) QUERY-TREE #*IN-RANGE?))

0' (LAMBDA (A 5) (IN- INTERVA.L? A B F-POINT))

ZLT'JN LOCATE-X-Y (X Y QUERY-TREE)
LOCATE-POINT (MAKE-POINT X X Y Y) QUERY-TREE))

0*ful SWEP (polys &optional query)
(project polys nil 1\2 -1\2 0.0 query))

;, sage: (OUTER-UNION (SWEE INPUT)) ae

iefun outer-union (polys)
rmpcar *'complement-poly (filter polys #'free?)))

TANGENT is the slope of the v.c. edge.
for backprojection. the top and bottom tangents ar, of the form

.;(minus slope ,positive slop.)
call with args like: (backprolection environmentl start-regioni 1\10 .26)

defun forward-projection
(obstacles start-region tangent mu &optional query)

4 Ho*t ((top-tangent labs tangent))
(bottom-tangent (- labs tangent))))

(project obstacles start-region top-tangent bottom -Langent mu query)))

dofur! ak-backprojet ion
(obstacles start-region tangent mu Aoptlonal query)

(.((backprojection?wa)
(top-tangent labs tangent))

* (bottom-tangent (- labs tangent)))
(ist ((*M* MU)

(-neg-vI* (list (float (denominator bottom-tangent))
(float (numerator bottom-tangent?))))

(*neg-v2l (list (float (denominator top-tangent))

(float (numerator top-tangent)))))
(project obstacles start-region top-tangent bottom-tangent mu query))))

apfvar Imul)
clefvar *neg-v1(
'jptvar -neg-v2-)

296

%

(detfun backprojection (OBSTACLES START-REGION TANGENT KU 6OPTIONAL QUERY)
(lot ((baekprojection?- atrong)

(top-tangent (- (&be tangent)))
(bottom-tanlgeft (&be tangent)))

(lt((*Mu* mu)
(*nog-v1 (list (float (denominator top-tangent))

(float (numerator top-tangent))))
(*neg-v2l (list (float (denominator bottom-tangent))

(float (numerator bottom-tangent)))))
(project OBSTACLES START-REGION TOP-TANGENT BOTTON*TANGENT MU QUERYM)

(detmacro backgrojection? 0)
lbackprojection?)

(detmacro atronq-backprojection? C
I(eq (backprojection?) astronq))

(definacro veak-backprojection? ()
'(eq (backproJoction?) 'weak))

(DEFUN PROJECT (OBSTACLES START-REGION TOP-TANGENT BOTTOM-TANGENT MU &OPTIONAL QUERY)
(LET* ((SA (WHEN MU (// MU (SORT (1+ (* M4U MU))))

(EVENTS NIL)
(STRUCT (MJ(E-OUTPUT-STRUCTURE POLYGON (KMK-POLYGON COLOR 0)))
(FREE-INTERVAL (MkE-INTERVAL TOP (MAKE-EON X 0 Y 1)

BOTTOM (MAKE-EON X 0 Y 1)
OUTPUT-STRUCTURE STRUCT)

(SWEEP-LINE (AVL-INSERT FREE-INTERVAL NIL NIL))
(EVENT-QUEUE (QUUE-INITIAL-EVENTS OB3TACLES *OBSTACLE FREE-INTERVAL

(QUEUE-INITIAL-EVENTS START-REGION 'START FREE-INTERVAL NIL)))
(OLD-STRUCTS NIL)
(QUERY-TREE NIL))

(SETF (TOP-END STRUCT) STRUCT)
(SETF (BOTTON-ENL. STRUCT) STRUCT)
(MULTIPLE-VALUE (EVENTS EVENT-QUEUE) (AVL-HEAD-ALL EVENT-QUEU))
(DO ((POLYS NIL)

(OLO-X NIL))
((NULL EVENTS)

(COND (QUERY
(SETO QUERY-TREE

(AVL-INSERT (MAKE-QUERY-NODE X-MIN OLD-X INTERVALS SWEEP-LINE)
QUERY-TREE O*ALWAY3-2,))

(FIX-OLD-STRUCTS OLD-STRUCT3f)
(VALUES (CONS (POLYGON (OUTPUT-STRUCTURE (VALUE SWEEP-LINE))) POLYS)

QUERY-TREE))
(LET* ((POINT (POINT (FIRST EVENTS)))

(F-POINT (mmX-porNT X (FLOAT (X POINT)) Y (FLOAT (Y POINT)))
(RELEVANT-INTERVALS (AVL-ACCESS-ALL POINT SIWEEP-LINE

#* (LAMBDA (A B)
(IN-INTERVAL? A B F-POINT)

(INT-- * (LAMBDA (A 5) (INTERVAL-> A a POINT F-POINT -1)))
(INT->.- #,(LAMBDA (A B) (INTERVAL->' A B POINT F-POINT 1))))

(COND ((AND QUERY (OR (NULL OLD-X) (0 OLD-K (X POINT))))
(SETQ QUERY-TREE (AVL-INSERT (MAK-QUERY-NODE X-MIN OLD-K K-MAX (K POINT)

INTERVALS SWEEP-LINE)
QUERY-TREE * 'ALNAYS->))

* (SETO OLD-X (X POINT)
(IF (NULL (EON (FIRST EVENTS))) (SETO EVENTS (CDR EVENTS)))
(SETQ EVENTS (KUM-EVENTS EVENTS (CROSSING-EVENTS RELEVANT-INTERVAL)))
(MULTIPLE-VALUE (VOLTS OLD-STRUCTS)

(CLOSE-INTERVALS RELEVANT-INTERVALS POINT POLY$ OLD-STRUCTS QUERY))
(MULTIPLE-VALUE (RELEVANT-INTERVALS SWEEP-LINE)

(DELETE-INTERVALS RELEVANT-INTEVALS INT->- SWEEP-LINE QUERY))
(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS)

* (UPDATE-INTERVALS RELEVANT-INTERVALS EVENTS TOP-TANGENT BOTTOM-TANGENT 3A
POINT INT->- INT-+ SWEEP-LINE EVENT-QUEUE POLYS
OLD-STRUCTS QUERY))

(SETO SWEEP-LINE (NEW-INTERVALS RELEVANT-INTERVALS EVENTS
POINT INT-)-. SWEEP-LIKE QUERY))

'S (MULTIPLE-VALUE (EVENTS EVENT-QUEUE) (AVL-HEAD-ALL EVENT-QUEUE)))))

(DEFUN QUEUE-INITIAL-EVENTS (POLYS TYPE FREE-INTERVAL EVENT-QUEUE)
(DO ((POLYS POLYS (REST POLTS))

((NULL POLYS) EVENT-QUEUE)
(DOLIST (LOOP (LOOP-LIST (FIRST POLYS))

297

% %

* (DOLIST (EDGE LOOP)
iLET ((Y (Y (HEAD EDGE))

(EON (iF (OR (KINUSP (Y (EQN EDGE)))
(AND (ZEROP (Y (EON EOGE))

(PLUS? (X (EON EDGE)))))
(NEC-CON (EON EDGE))
(EON EDG);))

(IF (OR (MULL (D (TOP FREE-INTERVAL)))
(' (- -1 Y) (0 (TOP rREE-INTERVALM)

(5317 (0 (TOP FRE-INTERVAL)) 1- -1 Y))
* (IT (Olt (NULL (D (BOTTOM FRELINTERVAL)))

(2 (- I Y) (D (BOTTOM FREE-INTERVALM))
(SETF (D (BOTTOM FRE-INTERVALL)) (- I Y))

(SETO EVENT-QUEUE (EVENT-ADD (KMK-EVENT POINT (TAIL EDGE
EON EON
COLOR-CHANGE (ENCODE TYPE 1))

EVENT-QUEUE 0 *EVENT-'j))
(SETO EVENT-QUEUE (EVENT-ADD (MAKE-EVENT POINT (W.AD EDGE)

EON EON
COLOR-CHANGE (ENCODE TYPE -1))

EVENT-QUEUE *' EVENT-)?)))))

(DEFUN CZOSE-ZNTERVALS (INTERVALS POINT POLYS OLD-STR(CTS QUERY)
(DO ((PTA (REST INTERVALS) (REST PTA)))

((NULL (REST PTA)) (VALUES POLYS OLD-STRUCTS))
(UNLESS (FP? (COLOR (POLYGiON (OUTPUT-STRUCTUP.E (FIRST PTA)))))
(NULTIPLE-VALUE (POLYS OLD-STAUCTS)

(CLOSE-INTEVAL (FIRST PTR) POINT POLYS OLD-STAUCTS QUERY)))))

(DEFUN CLO0SE-INTERVAL (INTERVAL POINT POLYS OLD-STRUCTS QUERY)
(LET ((STAUCT (OUTPUT-STRUCTrU3Z INTERVAL))

* (SETr (TAIL (FIRST (TOP STRUCT)) POINT)
I * (SET? (mEA (FIRST (BOTTOM STAUCT))) POINT)

(COND ((EQ (3 TTON-END STRUCT) STAUCT)
* (SET? (LOM-LIST (POLYGON STRUCT))

(CONS (TOO STRUCT) (LOO-LIST (POLYGON STRUCTM))
(IF (NULL (LOOP-ED (POLYGON STRUCT))

(SET! (WOW-END (POLYGON STRUCT)) (WOWP-LIST (POLYGON STRUCTM))
(SETO POLYS (coWs (POLYGON STAUCT) POLYS))

(T (SET! (REST (BOTTOM STRUCT)) (TOP STRUCT))
(SET? (BOTTON-END (TOP-END STAUCT))

(BOTTOM-EUD STRUCT))
(SET? (TOW-END (BOTTCH-END STRUCT))

(TOW-END STRUCT))
(COND (OuER

(SET? (POLYGON STRUMT * DISCARDED)
(SETO OLD -STRUCTS (CONS STAUCT OLD-STAUCTS)))))

(VALUES POLYS OLD-STAUCTS))

(DEFUN CROSSING-EVENTS (INTERVALS)
(DO ((THIS (REST INTERVALS) (REST THIS))

(PREV INTERVALS THIS)
(EVENTS NIL))

((NULL THIS) EVENTS)
(LET ((COLORl (COLOR (POLYGON1 (OUTPUT-STAUCTURE (FIRST THIS))))

(COWAR2 (COLOR (POLYGON (OUTPUT-STRUCTURE (FIRST P3EV))))))
(IF (NOT (OR (AND (FP7 COLORI) FREE? COLOR2))

(AND (VP? COLOR2) (FREE? COLORI))))
(SETO EVENTS

(cons (Nm-VNsT Ean (Top (FIRST P3EV))

0* COLON-CHANG (COLOR-FIELD (SUB-COLORS COLO.1 COLOR2)))

(DEFUN DELETE-INTERtVALS (INTERVALS rNT- P- SWEEP-LINE QUERY)

(DO ((PTA (REST INTERVALS) (REST PTA))
(P3EV INTERVALS))

*((NULL (REST PTA)) (VALUES INTERVALS SWEEP-LINE))
(COND ((OR (EQ 'DISCARDED (POLYGON (OUTPUT-STRUCTURE (FIRST PTA)

(NOT (F?? (COLOR (POLYGON (OUTPUT -STRUCTURE (FIRST PTA))))
(SETO SWEEP-LINE (AvL-DeLETE (FIRST PTA) SWEEP-LINE INT->- QUERY))
(SET? (REST P3EV) (REST PTA))

(T (SETO P3EV PTAM)))

298

(DEFUN UPDATE-INTERVALS (INTERVALS EVENTS TOP-TANGENT BOTTOM-TANGENT SA
POINT INT->- INT-e SWEEP-LINE EVENT-QUEUE POLYS OLD-STRUCTS QUERY)

(LET* ((TOP-INTERVAL (FIRST (LAST INTERVALS)))
(MIDDLE-INTERVAL (SECOND INTERVALS))
(BOTTOM-INTERVAL (FIRST INTERVALS))
(TOP-TANGENT-EQN (MAKE-EQN X C-TOP-TANGENT) Y 1

D (- (* (X POINT) TOP-TANGENT) (Y POINT))))
(BOTTOM-TANGENT-EON (MAKE-EQN X C- BOTTOM-TANGENT) Y 1

D (- C' (X POINT) BOTTOM-TANGENT) (Y POINT)))))
(SETQ EVENTS (PROJECTION-EVENTS (COLOR (POLYGON (OUTPUT-STRUCTURE TOP-INTERVAL)))

(COLOR (POLYGON (OUTPUT-STRUCTURE BOTTOM-INTERVAL)))
TOP-TANGENT-EQN BOTTOM-TANGENT-EON EVENTS SA))

(LET ((TEM-EVENTS EVENTS))
(COND ((REST2 INTERVALS)

(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE TEMP-EVENTS POLYS OLD-STRUCTS)
(UPDATE-MIDDLE-INTERVAL TOP-INTERVAL MIDDLE-INTERVAL BOTTOM-INTERVAL

EVENTS TOP-TANGENT-EQN BOTTOM-TANGENT-EQN SA
POINT INT-3- INT-> EVENT-QUEUE SWEEP-LINE
POLYS OLD-STRUCTS QUERY))))

(IF (REST INTERVALS)
(COND (TEMP-EVENTS

(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE)
(CHANGE-INTERVAL TOP-INTERVAL (TOP TOP-INTERVAL)

(EON (FIRST (LAST TEMP-EVENTS)))
POINT INT-3- INT-> SWEZP-LINE EVENT-QUEUE QUERY))

(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE)
(CHANGE-INTERVAL BOTTOM-INTERVAL (EON (FIRST TEMP-EVENTS))

(BOTTOM BOTTOM-INTERVAL)
POINT INT->- INT-'. SWEEP-LINE EVENT-QUEUE QUERY)))

(T (MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE OLD-STRUCTS)
(JOIN-INTERVALS TOP-INTERVAL BOTTOM-INTERVAL POINT INT-'- INT->+

SWEEP-LINE EVENT-QUEUE OLD-STRUCTS QUERY))))
(IF TEMP-EVENTS (MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE)

(SPLIT-INTERVAL BOTTOM-INTERVAL (EON (FIRST (LAST TEMP-EVENTS)))
(EON (FIRST TEMP-EVENTS)) POINT
INT-'- INT->+ SWEP-LINE EVENT-QUEUE QUERY))))))

(VALUES SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS))

(DF.FUN IN-BETWEEN (BOTTOM-EVENT MIDDLE TOP-EVENT)
(AND (OR (NULL TOP-EVENT)

(PLUSP (SLOPE-) (EON TOP-EVENT) MIDDLE)))
(OR (NULL BOTTOM-EVENT)

(PLUSP (SLOPE-> MIDDLE (ION BOTTOM-EVENT))))))

modified for Backprojection and Weak backprojection

(DEFUN PROJECTION-EVENTS (TOP-COLOR BOTTOM-COLOR TOP-TANGENT-EN BOTTOM-TANGENT-EQN EVENTS SA)
(DO* ((NEW-EVENTS (CONS NIL EVENTS))

(PTR NEW-EVENTS (REST PTR))
(COLOR BOTTOM-COLOR)
(OLD-COLOR BOTTOM-COLOR))

((NULL PTR) (REST NEW-ZVENTS))
(LET* ((PREV-EVENT (FIRST PTR))

(THIS-EVENT (SECOND PTR))
* CNEW-COLOR (IF THIS-EVENT

(ADD-COLORS-CAREFULLY COLOR (COLOR-CHANGE THIS-EVENT))
TOP-COLOR))

(NEXT-COLOR (IF THIS-EVENT
(COND ((AND (FREE? COLOR) (START? NEW-COLOR)) PROJ-COLOR)

((AND (FP? COLOR) (OBST? NEW-COLOR)) FREE-COLOR)
(T COLOR))

TOP-COLOR))
0 (PREV-COLOR (IF (AND (FREE? COLOR) (START? OLD-COLOR)) PROJ-CCLOR COLOR)))

(COWD ((AND PREV-EVENT
(OR (AND (FP? NEXT-COLOR)

(PLUSP (SLOPE-> (EON PREV-EVENT) BOTTOM-TANGENT-EQN)))
(AND (FP? PREV-COLOR)

(PLUSP (SLOPE-> TOP-TANGENT-EON (EON PREV-EVENT))))))
(SET? (COLOR-CHANGE PREV-EVENT) (ADD-COLORS (COLOR-CHANGE PREV-EVENT)

CCOMD ((AND (FREE? PREY-COLOR) PO-OO))

(FP? NEXT-COLOR)
(IN-BETWEEN PREV-EVENT BOTTOM-TANGENT-EQN THIS-EVENT))

(cond ((coupute-backproject ion-sIidinq prev-event top-tangent--eqn

299

0 ,. - . . - , . _ , - - - . . , ,-. ".?, " . .

- - - -- - - - -- - - -

botto.-tangent-eqn SA 'bottom)
(SETF (REST PTR)

(CONS (MAj(E-EVENT EON BOTTOM-TANGENT-EQN COLOR-CHANGE PROJ-COLOR)
(REST PTR))

(SETO PR (REST PTR))
(prey-etvent.
(setf (color-change prov-e%,ent) (add-colors (color-change preY-evont)

proj-color)))
(COND ((AND (FREE? NEXT-COLOR)

(FP? PREY-COLOR)
* (IN-BETWEXN PREV-EVENT TOP-TANGENT-EQN THIS-EVENT)

(compute-backprojection-sliding this-event top-tangsnt-eqn
bottom-tangent-eqn SA0)

(STff (REST PTh) (CONS (MANE-EVENT EQN TOP-TANGENT-EON

* (REST COLOR-CHANGE (NEG-COLOR PROJ-COLOR))

(SETO PTR (REST PTR))))
(SETO OLD-COLO0R COLOR)
(SETO COLOR NEW-COLOR))))

should return T if we should erect a velocity constraint

(defun compute-backrojection-sliding (event top-tangent-eqn bottom-tangent-eqn SA bottom?)
(cond (MNot (backprojection?)) T)

((null event) T)
(T (let ((edqe-eqn (eqn event)))

(cond iii ((start? (color-change event)) nil)
(T
(solectq (backprojection?)

-, (Weak
(not (weak-can-slide? (orient-edget-equation edqo-eqn bottom?))))

(Strong
(not (must-slide? (orient-edqe-equation edqo-eqn bottom?))))

(old-weak (not (old-weak-can-slide? edqe-eqn
top-tangent-eqn
bottom-tangent-eqn SA)))))))

event normals are oriented upwards. always. Expect for vertical events.
where th normals point to the left.

(defun orient-edge-equation (eqn bottom?)
(when eqn

(if (or (and (zerop (y eqn))
(minusp (x eqn)))

(and bottom? (minusp (y eqn)))
(and (not bottom?) (plusp (y eqn))))

(neg-eqn eqm)
eqnf)

Decides if, using the OPPOSITE velocity cone, we can slide on the
a' edge with eqn EDGE-EON.

(defun old-weak-can-slide? (edge-eqn tep-tangent-eqn bottomr-tangent-eqn sa)
(and edqe-eqn (can-slide? edge-eqn top-tangent-eDqn bottom-tangent-eqn SAM)

does not handle the case where mu a 0 and there's no velocity uncertainty

(defun weak-can-elide? (eqn Goptional (neg-vl 'neg-vi') (neq-v2 *nag-v2*) (mu *mu*))
(and eqn

a. (let* ((normal (list (float (x eqn)) (float (y eqn))))
(tangent (list (- mu (cadr normal)) (* (minus mu) (car normal))))

a' (lot ((el (vc2add normal tangent))
(o2 (va-sub normal tangent)))

-, (or (- mu 0.0)
(not (In-2D-cone-p neq-vi al o2))
(not (In-2D-cone-p neq-v2 el e2))))

(DEFUN MUST-SLIDE? (EON)
(and eqn

(slide-p eqn)))

300

rf -. -. .N

modified to Cloe In case of backproection

(DEFUN UPDATE-MIDDLE-INTERVAL (TOP-INTERVL MIDDLE-INTERVAL BOTTOM-INTERVAL
EVENTS TOP-TANGENT-EON BOTTOM-TANGENT-EQN SA POINT
INT->- INT-.* EVENT-QUEUE SWEEP-LINE POLYS OLD-STRUCTS QUERY)

(COND ((AND (not (backprojection?))
(FREE? (COLOR (POLYGON (OUTPUT-STRUCTURE BOTTOM-INTERVAL))))
(NOT (START? (COLOR (POLYGON (OUTPUT-STRUCTURE TOP-INTERVAL))))))

(MULTIPLE-VALUE (MIDDLE-INTIERVAL SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS)
(CONTINUE-MIDDLE MIDDLE-INTERVAL

(IF EVENTS (EON (FIRST EVENTS)) TOP-TANGENT-EQN)
(IF (AND EVENTS (PLUSP (SLOPE-> BOTTOM-TANGENT-EON

(EON (FIRST EVENTS)))))
(EON (FIRST EVENTS)) -'

BOTTOM-TANGENT-EON)
TOP-TANGENT-EON BOTTOM-TANGENT-EQN SA POINT INT->- INT-> -

SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS QUERY)))
((AND (not (backprojection?))

(FREE? (COLOR (POLYGON (OUTPUT-STRUCTURE TOP-INTERVAL))))
(NOT (START? (COLOR (POLYGON (OUTPUT-STRUCTURE BOTTOM-INTERVAL))))))

(MULTIPLE-VALUE (MIDDLE-INTERVAL SWEEP-LIME EVENT-QUEUE EVENTS POLYS OLD-STRUCTS)
(CONTINUE-MIDDLE MIDDLE-INTERVAL

(IF (AND EVENTS (PLUSP (SLOPE-> (EON (FIRST (LAST EVENTS)))
TOP-TANGENT-EON)))

(EON (FIRST (LAST EVENTS)))
TOP-TANGENT-EQN)

(IF EVENTS (EON (FIRST (LAST EVENTS))) BOTTOM-TANGENT-EON)
TOP-TANGENT-EON BOTTOM-TANGENT-EON SA POINT INT->- INT->+
SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS QUERY)))

(T (MULTIPLE-VALUE (POLYS OLD-STRUCTS)
(CLOSE-INTERVAL MIDDLE-INTERVAL POINT POLYS OLD-STRUCTS QUERY))

(SETQ SWEEP-LINE (AVL-DELETE MIDDLE-INTERVAL SWEEP-LINE INT->- QUERY))
(SETO MIDDLE-INTERVAL NIL)))

(COND ((AND MIDDLE-INTERVAL (F? (COLOR (POLYGON (OUTPUT-STRUCTURE BOTTOM-INTERVAL)))))
(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE OLD-STRUCTS)

(JOIN-INTERVALS MIDDLE-INTERVAL BOTTOM-INTERVAL
POINT INT->- INT-.+ SWEEP-LINE EVENT-QUEUE OLD-STRUCTS QUERY)))

((AND MIDDLE-INTERVAL (FP? (COLOR (POLYGON (OUTPUT-STRUCTURE TOP-INTERVAL)))))
(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE OLD-STRUCTS)

(JOIN-INTERVALS TOP-INTERVAL MIDDLE-INTERVAL
POINT INT->- INT-> SWEEP-LINE EVENT-QUEUE OLD-STRUCTS QUERY))))

(VALUES SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS))

(DEFUN CONTINUE-MIDDLE (MIDDLE-INTERVAL MIDDLE-TOP MIDDLE-BOTTOM TOP-TANGENT-EQN
BOTTOM-TANGENT-EON SA POINT INT->- INT->+
SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS QUERY)

(COND ((AND (EQUAL MIDDLE-TOP MIDDLE-BOTTOM)
(NOT (CAN-SLIDE? MIDDLE-TOP TOP-TANGENT-EON BOTTOM-TANGENT-EN 3A)))

(MULTIPLE-VALUE (POLYS OLD-STRUCTS)
(CLOSE-INTERVAL MIDDLE-INTERVAL POINT POLYS OLD-STRUCTS QUERY))

(SETO SWEEP-LINE (AVL-DELETE MIDDLE-INTERVAL SWEEP-LINE INT->- QUERY))
(SETO MIDDLE-INTERVAL NIL))

(T (SETO EVENTS (MERGE-EVENTS EVENTS (LIST (MAKE-EVENT EON MIDDLE-BOTTOM
COLOR-CHANGE PROJ-COLOR) ,..

(MAKE-EVENT EON MIDDLE-TOP %

COLOR-CHANGE
(NEG-COLOR PROJ-COLOR)))))

(UNLESS (EQUAL MIDDLE-TOP MIDDLE-BOTTOM)
(COND ((PLUSP (SLOPE-> MIDDLE-TOP TOP-TANGENT-EON))

(SETO SWEEP-LINE (CREATE-INTERVAL MIDDLE-TOP TOP-TANGENT-EON FREE-COLOR
POINT INT->+ SWEEP-LINE QUERY))

(SETO MIDDLE-TOP TOP-TANGENT-EQN))) %
(COND ((PLUSP (SLOPE-> BOTTOM-TANGENT-EON MIDDLE-BOTTOM)) A

(SETO SWEEP-LINE
(CREATE-INTERVAL BOTTOM-TANGENT-EON MIDDLE-BOTTOM FREE-COLOR

POINT INT->e SWEEP-LINE QUERY))

(SETO MIDDLE-BOTTOM BOTTOM-TANGENT-EQN))))
(MULTIPLE-VALUE (SWEEP-LINE EVENT-QUEUE)
(CHANGE-INTERVAL MIDDLE-INTERVAL MIDDLE-TOP MIDDLE-BOTTOM

POINT INT->- INT->+ SWEEP-LINE EVENT-QUEUE QUERY))))
(VALUES MIDDLE-INTERVAL SWEEP-LINE EVENT-QUEUE EVENTS POLYS OLD-STRUCTS))

(DEFUN CAN-SLIDE? (EON TOP-TANGENT-EQN BOTTOM-TANGENT-EON SA)

(> (MAX (ABS (// (DOT EON TOP-TANGENT-EQN)

301

%"". ".

.. . ':*-~::~K.:-,-. . . .

(SORT (- (DOT EON EON) (DOT TOP-TANGENT-LON rOP-TANGENT-EQN)))
(ABS (// (DOT LON BTTOM-TANGENT-EQN)

(SORT (I (DOT EON EON) (DOT SOrTOM-TANGENT-EQN BOTTON-TANGENT-EQN)))))
SA))

(DETUN CHANGE-INTERVAL (INTERVAL TOP BOTTOM POINT INT->- INT->. SWEEP-LINZ EVENT-QUEUE QUERY)
(LET (1STRUCT (OUTPUT-STRUCTURE INTERVAL))

(COND ((NOT (AND (EQUAL (TOP INTERVAL) TOP)
(EQUAL (BOTTOM INTERVAL) BOTTOM)))

(COND ((NOT (EQUAL (TOP INTERVALl TOP))
(SETT (TAIL (FIRST (TOP STRUCT)) POINT)
(SET? (TOP STRUCT) (CONS (KAN-EDGE HEAD POINT LON TOP) (TOP STRUCTM))

(COND ((NOT (EQUAL (BOTTOM INTERVAL) BOTTOM))
(SET? (HEAD (FIRST (BOTTOM STRUCT)) POINT)
(SETr (REST (BOTTOM STRUCT))

(UCONS (KANE-EDGE TAIL POINT EON (NEG-EQII BOTTOMM)
(SET? (BOTTOM STRUCT) (REST (BOTTOM STRUCTM))

(LET ((NEW-INTERVAL (KANE-INTERVAL TOP TOP BOTTOM BOTTOM
OUTPUT-STRUCTURE STRUCT))

(SETO SWEEP-LINE (AVL-DELETE INTERVAL SWEEP-LINE INT->- QUERY))
(SETO SWEEP-LINE (AVL-IN3ERT NEW-INTERVAL SWEEP-LINE INT-.+ QUERY))
(IF (EVENT INTERVAL)

(SETO EVENT-QUEUE (EVENT-U (EVENT INTERVAL) EVENT-QUEU)))
(SETO EVENT-QUEUE (CLOSURE-EVENT? NEW-INTERVAL EVENT-QUEUE))))))

(VALUES SWEEP-LINE EVENT--QUEUE))

(DEFUN SPLIT-INTRVAL (INTERVAL TOP BOTTOM POINT INT-- INT-.- SWEEP-LINE EVENT-QUEUE QUERY)
(LET* ((BOTTOM-STRUCT (OUTPUT-STRUCTURE INTERVAL))

(TOP-STRUCT (MKE-OUTPUT-STRUCTURE POLYGON (POLYGON BOTTOM-STRUCT)
TOP (TOP BOTTOM-STRUCT)
TOP-END (TOP-END BOTTOM-STRUCT)
BOTTOM-END BOTTOM-STRUCTM)

(SET! (BOTTOM-END (TOP-END 901TOM-STRUCT)) TOP-STRUCT)
(SET! (TOP-END BOTTOM-STRUCT) TOP-STRUCT)
(SETF (TOP BOTTOM-STRUCT) (LIST (KANE-EDGE HEAD POINT EON BOTTOM)

(KAN-EDGE TAIL POINT EON (NEG-EQI TOP)
(SET! (BOTTOM TOP-STRUCT) (REST (TOP BOTTOM-STRUCT))
(SETO SWEEP-LINE (AVL-DEIZTE INTERVAL SWEEP-LINE INT->- QUERY))
(IF (EVENT INTERVAL)

(SETQ EVENT-QUEUE (EVENT-SUN (EVENT INTERVAL) EVENT-QUEUE))
(LET ((TOP-INTERVAL (MKE-INTERVAL TOP (TOP INTERVAL) BOTTOM TOP

OUTPUT-STRUCTURE TOP-STRUCT))
(BOTTOM-INTERVAL (MMN-INTERVAL TOP BOTTOM BOTTOM (BOTTOM INTERVAL)

* OUTPUT-STRUCTURE BOTTOM-STRUCT))
* (SETO SNWE-LINE (AVL-IVSERT SOL O-INTERVAL

(AVL-INSERT TOP-INTERVAL SWEEP-LINE INT-". QUERY)
INT->+ QUERY))

(SETO EVENT-QUEUE (CLOSURE-EVENT? BOTTOM-INTERVAL
(CLOSUREZ-EVENT? TOP-INTERVAL EVENT-QUU)))))

(VALUES SWEEP-LINE EVENT-QUEUE))

(DEFUN JOIN-INTERVALS (TOP-INsTVAL DoTTOm-INTERVAL
POINT INT-- INT->+ SWEEP-LINE EVENT-QUEUE OLD-STRUCTS QUERY)

(LET' ((TOP-STRUCT (OUTPUT-STRUCTURE TOP-INTERVALL))
(BOTTOM-STRUCT (OUTPUT-STRUCTURE BOTTOM-INTERVAL))
(TOP-POLY (POLYGON TOP-STRUCT))
(901T1M-POLY (POLYGON DOTTON-STRUCTM)

(SETF (READ (FIRST (BOTTOM TOP-STRUCT))) POINT)
(SET! (TAIL (FIRST (TOP BOTTOM-STRUCT))) POINT)
(COND ((EQ (TOP-END BOTTOM-STRUCT) TOP-STRUCT)

(SETF (LOOP-LIST TOP-POLY)
(CONS (TOP SOTTOM-STRUCT) (LOOP-LIST TOP-POLY))

* (IF (NUL (LOOP-END TOP-POLY))
(SETT (LOOP-END TOP-POLY) (LOOP-LIST TOP-POLY))

(SET? (LOOP-LIST BOTTOM-POLY)
(LOOP-LIST TOP-POLY))

(SET? (LOOP-END BOTTOM-POLY) (LOOP-END TOP-POLYM)
(T (SET! (REST (BOTTOM TOP-STRUCT)) (TOP BOTTOM-STRUCT))

(SET? (TOP-END (BOTTOM-END TOP-STRUCT)) (TOP-END BOTTOM-STRUCT))
(SET! (BOTTOM-END (TOP-END BOTTOM-STRUCT)) (BOTTOM-END TOP-STRUCTM))

(SET? (BOTTOM-END (TOP-END TOP-STRUCT)) BOTTOM-STRUCT)
(SA TPBTT.SRC)(OPTPSRC)
(SET? (TOP-N BOTTOM-STRUCT) (TOP- TOP-STRUCT))

V 302

(COND (QUERY
(SET? (BOTTOM-END TOP-STRUCT) BOTTOM-STRUCT)
(SETF (POLYGON TOP-STRUCT) 'DISCARDED)
(SETO OLD-STRUCTS (CONS TOP-STRUCT OLD-STRUCTS))))

, (COND ((NOT (EQ (LOOP-LIST TOP-POLY)
(LOOP-LIST BOTTOM-POLY)))

(IF (LOOP-LIST BOTTOM-POLY)
(SETF (REST (LOOP-END BOTTOM-POLY))

(LOOP-LIST TOP-POLY))

(SETF (LOOP-LIST BOTTOM-POLY) (LOOP-LIST TOP-POLY)))
(IF (LOOP-END TOP-POLY)

(SETr (LOOP-END BOTTOM-POLY) (LOOP-END TOP-POLY)))
(SETT (LOOP-LIST TOP-POLY) (LOOP-LIST BOTTOM-POLY))

-. (SETF (LOOP-END TOP-POLY) (LOOP-END BOTTOM-POLY))))
(SETQ SWEEP-LINE (AVL-DELETE TOP-INTERVAL

(AVL-DELETE BOTTOM-INTERVAL SWEEP-LINE INT->- QUERY)
INT->- QUERY))

(IF (EVENT TOP-INTERVAL)
(SETO EVENT-QUEUE (EVENT-SUB (EVENT TOP-INTERVAL) EVENT-QUEUE)))

(IF (EVENT BOTTOM-INTERVAL)
(SETO EVENT-QUEUE (EVENT-SUB (EVENT BOTTOM-INTERVAL) EVENT-QUEUE)))

(LET ((INTERVAL (MAKE-INTERVAL TOP (TOP TOP-INTERVAL) BOTTOM (BOTTOM BOTTOM-INTERVAL)
OUTPUT-STRUCTURE BOTTOM-STRUCT)))

(SETO SWEEP-LINE (AVL-INSERT INTERVAL SWEEP-LINE INT-3. QUERY))
(SETO EVENT-QUEUE (CLOSURE-EVENT? INTERVAL EVENT-QUEUE))))

(VALUES SWEEP-LINE EVENT-QUEUE OLD-STRUCTS))

Z(DEFUN CLOSURE-EVENT? (INTERVAL EVENT-QUEUE)
(LET ((NEW-POINT (INTERSECTION-POINT (TOP INTERVAL) (BOTTOM INTERVAL))))

(COND (NEW-POINT
(SETF (EVENT INTERVAL)

(MMAE-EVENT POINT NEW-POINT COLOR-CHANGE 1))
(SETO EVENT-QUEUE (EVENT-ADD (EVENT INTERVAL) EVENT-QUEUE)))))

EVENT-QUEUE)

(DEFUN NEN-INTERVALS (INTERVALS EVENTS POINT INT->* SWEEP-LINE QUERY)
(DO ((PTR EVENTS (REST PTR))

(COLOR (COLOR (POLYGON (OUTPUT-STRUCTURE (FIRST INTERVALS))))))
((NULL (REST PR)) SWEEP-LINE)

(LET ((TOP-EVENT (SECOND PTR))
(BOTTOM-EVENT (FIRST PTR)))

(SETQ COLOR (ADD-COLORS-CAREFULLY COLOR (COLOR-CHANGE BOTTOM-EVENT)))
(SETQ SWEEP-LINE (CREATE-INTERVAL (EON TOP-EVENT) (EQW BOTTOM-EVENT) COLOR POINT

INT-. SWEEP-LINE QUERY)))))

(DEFUN CREATE-INTERVAL (TOP BOTTOM COLOR POINT INT-, SWEEP-LINE QUERY)
(LET ((STRUCT (MAKE-OUTPUT-STRUCTURE

POLYGON (MAKE-POLYGON COLOR COLOR)
*TOP (LIST (MAKE-EDGE HEAD POINT EON TOP)

(HM-EDGE TAIL POINT EON (EG-EQN BOTTOM))))))
, (SETF (BOTTOM STRUCT) (REST (TOP STRUCT)))

(SETF (BOTTOM-END STRUCT) STRUCT)
(SETF (TOP-END STRUCT) STRUCT)
(AVL-INSERT (MAKE-INTERVAL TOP TOP BOTTOM BOTTOM OUTPUT-STRUCTURE STRUCT)

SWEEP-LINE INT-" QUERY)))

(OEFUNE FIX-OLD- SERUCTS (OLD-STRUICTS)
(DOLIST (STRUCT OLD-STRUCTS)

(LET ((POLY (DO ((PTR STRUCT (BOTTOM-END PR)))
((NOT (EQ 'DISCARDED (POLYGON PTR))) (POLYGON PTR)))))

(DO ((PTR STRUCT (BOTTOM-END PTR)))
((NOT (EQ 'DISCARDED (POLYGON PR))))

(SETF (POLYGON PTR) POLY)))))

(DEFUN PROBLEM-SIZE (PROBLEM)

I Lr.T ((SIZE 0))
(COND ((EDGE-P PROBLEM) 1)

((POLYGON-P PROBLEM)
(DOLIST (LOOP (LOOP-LIST PROBLEM))

(SETQ SIZE (* SIZE (PROBLEM-SIZE LOOP))))
SIZE)
((LISTP PROBLEM)
(DOLIST (PROB PROBLEM)

303

" 1

nar ~ ~ ~ ~ ~ ~ ~~vLQ --r -','rr- ~ ~ ,- .- . - - - - -c- '_ - w- - "~ I -I- .-.-- N

(SETO SIZE I- SIZE (PROBLEM-SIZE PRO)))
SIZE)))

Sliding predicate from M4ike Erdmann.

7his function decides whether none of the velocity vectors in the range
vl through v2 cause sticking on an edge specified by 'normal'.

(deofun slide-p (eqn &optional (neg-vl 'neq-vl1) (neq-v2 -neg-v2l) (mu *mu*))
Ilet. ((normal (list (float (x oql)) (float (y eqn))))

(tangent (list I- mu (cadr normal)) I* (minus mu) (car normal)))
(let ((el (vc2add normal tangent))

(e2 (vc-sub normal tangent)))
* (print-line (list tangent el s2))

* (let (III (not (In-2D-cono-p normal neg-vl neg-v2)))
(12 (not (In-2D-cono-p neg-vi *1 a?)))
(13 (not (In-2D-oone-p nog-v2 *l a?)

(print-line (list 11 12 13))
land (not (In-2D-cone-p normal neq-vl noq-v2))

(or I- mu 0)
(and (not (In-ZO)-cona-p neg-vI *I e2))

(not (In-2D-con*-p neg-v2 .1 e2))))))))

Given that the two 2-0 vectors .1 and e2 are independlent.
this function decides whether a third 2-D vector, v,
.ios in the cone formed by the positive span of e1 and s2.

(defun Old-In-2D-cone-p (v el e2)
(let ((perp (20-cross-product el s2))

(el-x-v M2-crose-product el v))
(v-x-*2 (20-cross-product v s2)))

(and (> I* el-x-v perp) 0)

this is because the multiplication can overflow.

(defun In-2D-cone-p (v *1 02)
(let ((perp (2D-cross-product .1 e2))

(el-x-v (20-cross-product, al v))
(v-u-*? (20-cross-product v e2)))

.3 (let ((sigperp (signum perp)))
(and I*- (signum ol-x-v) sigperp) 0)

I- * (sigrnm v-x-*2) sigperp) 0)))))

* This function computes the cross-product of its two 2-D vector arguments.

(defun 20-cross-product (vI v2)
*(let ((xl (car vi))

(yl (cadr vi))
9(x2 (car v2))

(y2 (cadr v2M)
I - I* xl y2) (0 x2 yl))))

7his function expects two lists. representing vector.
Tt computes their vector sum.

(defun vc2add (vl v2)
(cond ((or (atom vl)

304

-0 4
* ;JV%. . . * .r~ ** *. . ~~ .'~V

(atom V2)) (ferror 'vector may not be an atom in vc2addl))
(t (mapcar (function +) v1 v2))))

; Thia function expects two lists. representinq vector.

; It computes their vector difference.

(defun vc-sub (vl v2)
(cond ((or (atom v1)

(atom v2)) (ferror "vector may not be an atom in vc-eub),

(t (mapcar (function *) v1 v2))))

2-..

305

.N %
NW a . . *~* ~ -N% ~ % P %% Nj .% "~P

;;::::;,::1:- basa:l0: packagetsweep: modtlisp--ii;::s1t

Code to build and maintain AVL trees, (c) 1986 Roger-the-AVL-shrubber, (a shrubber).

(OEFSTRCJCT (AVL-NODE INAMED
:PREDICATE

(sPRINT "<-& -a -a)," CLEFT AVL-NODE) (VALUE AVL-NODE) (RIGHT AVL-NQDE)))
VALUE
LEFT
RIGHT
BALANCE)

(DEFUN AVL-COPY (TREE)
(IF (NULL TREE)

NIL
(C4AX-AVL-NODE BALANCE (BALANCE TREE) VALUE (VALUE TREE)

LEFT (AVL-COPY (LEFT TREE))
RIGHT (AVL-COPY (RIGHT TREE)))))

(DEFUN AVL-SIZE (TREE)
(IF (NULL TREE)

0
C1+ (+ (AVL-SIZE (LEFT TREE))

1AVL-SIZE IRIGHT TRE))))))

Thin determine& the height of an AVL tre, and also Ihck if you: tree is
out of balance or "Koyaanisquatmi" in Hopi Indian. Actual height difference
should be the sam as the balance value, and should be in the rang. (-1.0,1).

(DEFtfl AVL-HEIGHT (TREE)
(COND ((NULL TREE) 0)

(T (LET ((HL. (AV-HEIGHT (LEFT TREE)))
(HR (AVL-HEIGHT (RIGHT TREE))))

(COND ((0 (- HR HL) (BALANCE TREE))
(FORMAT T"

The actual height difference -a does not agree with the balance entry -a for node -a"
(- MR HL) (BALANCE TREE) TREE))

(((A33 (BALANCE TREE)) 1)
(FORMAT TI

Nods, -s is Koyaanisquatsi, its balance value is -a, TREE (BALANCE TREE))))
(1+ (MAX HL H)))))

Function to find an entry in an AVL tree. PREDICATE should return 0 if KEY and
the node value are the sarn. +1 if KEY is greater than the node value. -1 otherwise.

(DEFtIN AVL-ACCESS (KEY TREE PREDICATE)
(AND TREE

V * (LET ((DIF (FUNCALL PREDICATE KEY (VALUE TREE))))
(COND ((PLUSP DIF) (AVL-ACCESS KEY (RIGHT TREE) PREDICATE))

* ((MINUSP DIF) (AVL-ACCE3S)MY (LEFT TREE) PREDICATE))
(T (VALUE TRE))))))

Function to find all the entries in an AVL tree that are equal to K[EY according to
PREDICATE. PREDICATE should return 0 if KEY and the node value are the *am,.
+1 if KEY is greater than the node value, -1 otherwise.

0 (DEFMn AVL-ACCESS-ALL (KEY TREE PREDICATE)
(AND TREE

(LET ((DIF (FUNCALL PREDICATE KEY (VALUE TREE))))
(COND C(PWUSP DIF) (AVL-ACCESS-ALL KEY (RIGHT TREE) PREDICATE))

((mNusp DIF) CAVL-ACCESS-ALL KEY (LEFT TREE) PREDICATE))
(T (NCONC (AVL-ACCESS-ALL KEY (LEFT TREE) PREDICATE)

(NCOWS (VALUE TREE))
(AVL-ACCESS-ALL REY (RIGHT TREE) PREDICATE)))))))

306

Return the left-moat value in an AVL tree.

(DEFUN LEFT-MOST (TREE)
(COND ((NULL TREE) NIL)

((NULL (LEFT TREE)) (VALUE TREE))

(T (LEFT-MOST (LEFT TREE)))))

Return the right-most value in an AVL tree.

(DEFUN RIGHT-MOST (TREE)
(COND ((NULL TREE) NIL)

((NULL (RIGHT TREE)) (VALUE TREE))

(T (RIGHT-HOST (RIGHT TREE)))))

Return the successor of a given node in an AVL tree. This returna the left-moat
node in the tree whose value is greater than the value of KEY.

(DEFUN AVL-NEXT (KEY TREE PREDICATE)
(AND TREE

(COND ((NINUSP (FUNCALL PREDICATE KEY (VALUE TREE)))
(OR (AVL-NEXT)MY (LEFT TREE) PREDICATE)

(VALUE TREE)))
(T (AVL-NEXT KEY (RIGHT TREE) PREDICATE)))))

DEFUN AVL-PREV (KEY TREE PREDICATE)
(AND TREE

(COND ((PLUSP (FUNCALL PREDICATE PEY (VALUE TREE)))

(OR (AVL-PREV KEY (RIGHT TREE) PREDICATE)
(VALUE TRE)))

(T (AVL-PREV KEY (LEFT TREE) PREDICATE)))))

The first interesting operation on AVL trees. This inserts THING into the tree
and returns a new tree and en integer which is the change in height of the tree.
If NO-MUTATION is T. the old tree is not changed, but a new tree is returned
containing the ineerted element. Tisi adds only about (AVL-HEIGHT TREE) extra nodes,
i.e. log(troe-size) extra space.

(DEFUN AVL-INSERT (THING TREE PREDICATE &OPTIONAL NO-MUTATION)
(IF (NULL TREE)

(VALUES (NAJC-AVL-NODE BALANCE 0 VALUE THING) 1)
(LET ((DIF (FUNCALL PREDICATE THING (VALUE TREE))))

(COND ((ZEROP 03F)
(VALUES (UPDATE-NODE TREE (BALANCE TREE) THING

(LEFT TREE) (RIGHT TREE) NO-NUTATION)
0))

((PLUSP DI?)
(MULTIPLE-VALUE-BIND (SUBTREE H(EIGHT-CHANGE)

(AVL-INSERT THING (RIGHT TREE) PREDICATE NO-MUTATION)
(SETO TREE (UPDATE-NODE TREX (+ (BALANCE TREE) HEIGHT-CHANGE)

(VALUE TREE) (LEFT TREE) SUBTREE NO-MUTATION))
(IF 0, (BALANCE TREE) 1)

* (IALANCZ-RIGHT TREE 1 N-MUTATION)
(VALES TREE (I? (PLUSP (BALANCE TREE)) HEIGHT-CHANGE 0)))))

(T (MOLTIPLE-VALOB-BIUD (SUBTMEE HEIGHT-CHANGE)
(AVL-INSERT THING (LEFT TREE) PREDICATE NO-MUTATION)

(SETO TREE (UPDATE-NODE TREE (- (BALANCE TREE) HEIGHT-CHANGE)
(VALUE TREE) SUITREE (RIGHT TREE) NO-MUTATION))

* (IF (< (BALANCE TREE) -1)
(BALANCE-LErT TREE 1 NO-MUTATION)
(VALUES TREE (IF (MINUSP (BALANCE TREE)) HEIGHT-CHANGE 0)))))))))

This delete* an entry from an AVL tree.
Thia also has a n~n-Imatating mode for producing coherent structures.

(DEFUN AVL-DELETE (THING TREE PREDICATE &OPTIONAL NO-MUTATION)
(IF (NULL TREE)

307

(VALUES NIL 0)
(LET ((DIF (FUNCALL PREDICATE THING (VALUE TREE))))
(COND ((ZEROP DIF)

(ERASE-NODE TREE NO-MUTATION))
((PLUSP DIF)
(MULTIPLE-VALUX-DIND (SUBTREE HEIGHT-CHANGE)

(AVL-DELETE THING (RIGHT TREE) PREDICATE NO-MUTATION)
(SETQ TREE (UPDATE-NODE TREE (+ (BALANCE TREE) HEIGHT-CHANGE)

(VALUE TREE) (LEFT TREE) SUBTREE NO-MUTATION))
(IF (< (BALANCE TREE) -1)

(BALANCE-LEFT TREE 0 NO-NUTATION)
(VALUES TREE (IF (ZEROP (BALANCE TREE)) HEIGHT-CHANGE 0)))))

(T (MULTIPLE-VALUE-BIND (SUBTREE HEIGHT-CHANGE)
(AVL-DELETE THING (LEFT TREE) PREDICATE NO-MUTATION)

(SETO TREE (UPDATE-NODE TREE (- (BALANCE TREE) HEIGHT-CHANGE)
(VALUE TREE) SUSTREE (RIGHT TREE) NO-MUTATION))

(IF (> (BALANCE TREE) 1)
(BALANCE-RIGHT TREE 0 NO-MUTATION)
(VALUES TREE (IF (ZEROP (BALANCE TREE)) HEIGHT-CHANGE 0)))))))))

; Thi gets rid of a value that has been found in the tree. NODE is the node containing
the value. If the right aubtree of NODE is higher than its left, replace the value
of NODE with the value of the left-moat leaf of the right subtree. and remove this
loaf from the right subtree. Otherwise replace NODE's value with the value of the
right-moet loaf of the left oubtree of NODE, and remove this leaf from the left oubtree.

(EFUN ERASE-NODE (NODE NO-MUTATION)
(COND ((AND (NULL (LEFT NODE)) (NULL (RIGHT NODE)))

(VALUES NIL -1))
((PLUSP (BALANCE NODE))
(MULTIPLE-VALUE-BIND (VAL SUSTREE HEIGHT-CHANGE)

(AVL-READ (RIGHT NODE) NO-MUTATION)
(SETQ NODE (UPDATE-NODE NODE (+ (BALANCE NODE) HEIGHT-CHANGE)

VAL (LEFT NODE) SUBTREE NO-MUTATION))
(VALUES NODE HEIGHT-CHANGE)))

(T (MULTIPLE-VALUE-BIND (VAL SUSTREE HEIGHT-CHANGE)
(AVL-TAIL (LEFT NODE) NO-MUTATION)

(SETO NODE (UPDAE-XODE NODE (- (BALANCE MODE) HEIGHT-CMNGE)
VAL SUBTREE (RIGHT NODE) NO-MUTATION))

(VALUES NODE (IF (ZROP (BALANCE NODE)) HEIGHT-CHANGE 0))))))

This returns the head (leftmost elamnt) in the tree, and removes it from the tree.
s: Ueful for implemnting priority queuea as AVL trees.

Values returned are the value of the leftmost olemnt, the modified tree. and the
change in height of the tree.

(DEFUN AVL-HEAD (TREE &OPTIONAL NO-MUTATION)
(COND ((NULL TREE) NIL)

((NULL (LEFT TREE))
(VALUES (VALUE TREE). (RIGHT TREE) -1))

(T (MULTIPLE-VALUE-BIND (HEAD-VALUE SUBTRZE HEIGHT-CHANGE)
(AVL-HEAD (LEFT TREE) NO-MUTATION)

(SETO TREE (UPDATE-NODE TREE (- (BALANCE TREE) HEIGHT-CHANGE)

(VALUE TREE) SUBTRE (RIGHT TREE) NO-MUTATION))
(IF (0 (BALANCE TREE) 1)

(14LTIPLE-VALUE (TREE HEIGHT-CHANGE)
(BALA=-RIGHT TREE 0 NO-MUTATION))

(IF (NOT (ZEROP (BALANCE TREE))) (SETO HEIGHT-CHANGE 0)))
(VALUES HEAD-VALUE TREE HIGHT-CHANGE)))))

This returns the tail (rightmoat element) in the tree, and removes it from the tree.
Values returned are the value of the rightmost elemont, the modified tree, and the
change in height of the tree.

(ErUN AVL-TAIL (TREE &OPTIONAL NO-MUTATION)
(COND ((NULL TREE) NIL)

((NULL (RIGHT TREE))
(VALUES (VALUE TREE) (LEFT TREE) -1))

(T (MULTIPLE-VALUE-BIND (TAIL-VALUE SUBTREE HEIGHT-CHANGE)

(AVL-TAIL (RIGHT TREE) NO-UTA%.ON)

- 308

4%

(SETO TREE (UPDATE-NODE 'TREE (+ (BALANCE TREE HE.GH-CHANGE)
(VALUE TREE) (LEFT 7R.EE) SUBIREE NO-MUTA7:oK)

(IF (< (BAL.ANCE TREE) -1)
(MULTIPLE-VALUE (TREE HEl GHT-CHANGE)

(BALANCE-LEFT TREE 0 NO-MUTATION))
(IF (NOT (ZERO? (BALANCE TREE))) (SETO HEIGHT-CHANGE 0)))

(VALUES TAIL-VALUE TREE HEIGHT-CHANGE)))))

Balance a TREE that in right-Royaanisequatmi, i.e. the right subtree is 2 levels
* higher than the left subtree. HEIGHT-CHANGE is the height of TREE relative to its
* value before the delete/inaert operatio.. Balance-right returns & node and the height

J. of that node relative to the original height of TREE .

"E(FJN BALANCE-RIGHT (TREE HEIGHT-CHANGE NO-NUT)
* tLET ((R (RIGHT TREE)))

(COND ((PLUS? (BALANCE R))
(SETO TREE (UPDATE-NODE TREE 0 (VALUE TREE) (LEFT TRE) (LEFT R) NO-NUT))
(SETO R (UPDATE-NODE R 0 (VALUE R) TREE (RIGHT R) NO-KUT))
(VALUES R (I- HEIGHT-CHANGE)))

((ZERO? (BALANCE R))
(SETO TREE (UPDATE-NODE TREE 1 (VALUE TREE) (LEFT TREE) (LEFT R) NO-NUT))
(SETO R (UPDATE-NODE R -1 (VALUE R) TREE (RIGHT R) NO-NUT))
(VAL.UES R HEIGHT-CHANUGE))

(T (LET ((LA (LEFT R)))
(SETO R (UPDATE-NODE R (IF (MINUS? (BALANCE LA)) 1 0)

(VALUE R) (RIGHT LA) (RIGHT R) MO-NUTH)
(SETO TREE (UPDATE-NODE TREE (IF (PLUS? (BALANCE LA), -: 0

(VALUE TREE) (LEFT TREE) (LEFT LA) NO-NU-T)
(SETO LA (UPDATE-NODE LA 0 (VALUE LA) TREE R NO-NUT))

* (VALUES LA (I- HEIGHT-CHANGE)))))))

* 3Balance a TREE that is left-IKoyaanisquatei, i.e. the left subtroa ise 2 levels
h-:gher than the right subtree. HEIGHT-CHANGE is the height of TREE relative to its
value before the delete/insert operation. Balance-left returns a node and the height
of that node relative to the original height of TREE.

ZEF1 N BALANCE-LEFT (TREE HEIGHT-CHANCE NO-NUT)
(:E- ((L (LEFT TREE)))

(COND ((MINUS? (BALANCE L))
(SETO TREE (UPDATE-NODE TREE 0 (VALUE TREE) (RIGHT L) IRIGHT TREE) NO-NUT)
(SETO-L (UPDATE-NODE L 0 (VALUE L) (LEFT L) TREE NO-NUT))
(VALUES L (1- HEIGHT-CHANGE))

((ZERO? (BALANCE L))
(SETO TREE (UPDATE-NODE TREE -1 (VALUE TREE) (RIGHT L) (RIGHT TREE) NO-NUT))
(SETO L (UPDATE-NODE L 1 (VALUE L) (LEFT L) TREE NO-NUT))
(VALUES L HEIGHT-CHANGE))

(T (LET ((REL (RIGHT Lf)
(SETO L (UPDATE-NODE L (IF (PLUS? (BALANCE RE)) -1 0)

(VALUE L) (LEFT L) (LEFT ILL) NO-NUT))
(SETO TREE (UPDATE-NODE TREE (IF (MINUS? (BALANCE RL)) 1 0)

(VALUE TREE) (RIGHT RE) (RIGHT TREE) NO-NUT))
(SETO RL (UPDATE-MODE RE 0 (VALUE RL) L TREE NO-NUT))
(VALUES RE (I- HEIGHT-CHNGE))))H)

Modify an existing AVL nods or create a new one, depending on the value of MO-MUTATION.

Z:E7,N UPDATE-NODE (NODE BALANCE VA~LUE LEFT RIGHT NO-MUTATION)
0.1 (:F NO-MUTATION

) MAXE-AVL-MODE BALANCE BALANCE VALUE VALUE LEFT LEFT RIGHT
RIGHT)

)PROGN (SETr (BALANCE NODE) BALANCE)
(SETF (VALUE NODE) VALUE)
(SETY (LEFT MODE) L.EFT)
(SETF (RIGHT NODE) RIGHT)
NODE)))

309

S%

%v %

SIV

.p

UU- pr% .-

